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Micro Abstract
In this work the isogeometric analysis concept is extended to the mortar-based method for coupling of
non-matching discretizations at common interfaces with application to FSI. In particular, focus is put
on transferring data between real world engineering geometries modeled in CAD and low order surface
discretizations. Moreover, the continuity enforcement between the trimmed multipatches is discussed.
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Introduction

Mapping methods for field transfer between non-matching interface discretizations are necessary
for real-world applications with complex models and thus have been studied especially for
coupled problems, such as contact problems and Fluid-Structure Interaction (FSI) simulations.
In particular, a thorough study over different methods for data transfer with application to FSI
is provided in [6]. The mortar-based method has shown very nice properties especially for highly
non-matching discretizations. In the present contribution, the the isogeometric b-rep analysis [5]
is extended to the mortar-based method in order to account for trimmed multipatch isogeometric
discretizations when data should be exchanged with low order surface discretizations in the
context of FSI. Additionally, a Penalty method is chosen for enforcing continuity constraints
between the non-matching NURBS multipatches as well as the Dirichlet boundary conditions in
a weak sense [3, 4].

1 Problem placement

Let Ω ⊂ R3 be a multipatch surface in 3D Euclidean space, that is, Ω may be decomposed into
a set of surfaces Ω(i) with i = 1, . . . , n ∈ N such that,

Ω =
n⋃
i=1

Ω(i) , (1a)

Ω(i) ∩ Ω(j) = ∅ , for all i, j = 1, . . . n with i 6= j , (1b)

Ωd : =

n⋃
i=1

Ω(i) , (1c)

Ω(i) ∩ Ω(j) = γ(i,j) , for all i, j = 1, . . . n with i 6= j , (1d)

γ =
⋃

(i,j)∈I

γ(i,j) , (1e)



I being the set of pairs (i, j) with i, j = 1, . . . , n excluding pairs of the form (i, i). Set of
equations (1) defines a non-overlapping domain decomposition of surface Ω. Subsequently, let
X ⊂ L2 (Ω) and Y ⊂ L2 (Ωd) stand for all weakly continuous vector functions in Ω and in Ωd,
respectively. In other words, space Y accounts also for non square integrable functions across γ.
Spaces X and Y , become inner product spaces when equipped with the inner product from the
L2 (Ω) space defined as,

〈
d, d̃

〉
0,Ω

:=

∫
Ω

d · d̃ dΩ for all d, d̃ ∈ L2 (Ω) . (2)

Clearly, every element y ∈ Y is discontinuous with discontinuous derivatives across the patch
interfaces.

As a differential operator of field y the bending part of the rotation operator as this is defined
in the Kirchhoff-Love shell with respect to the displacement field is herein chosen, see [3] for
more details. In the sequel ω (y) is referred to as the rotation of field y, defined as [3],

ω (y) := −n ·
(
∇y3 + B · y‖

)
, (3)

where y3 and y‖ stand for the out of plane and the in plane components of field y when it is
expressed over the covariant basis on surface Ω, that is,

y = yαAα + y3A3 = y‖ + y3A3 , (4)

Aα and A3 being the covariant base vectors and the surface normal base vector of surface Ω.
Additionally, n, ε, ∇ and B stand for the in plane unit vector normal to the axis of rotation ω,
the permutation tensor, the gradient operator and the curvature tensor in the curvilinear space
of the surface Ω.

Subsequently, given two elements y ∈ Y and x ∈ X , the task is to find another two elements
x ∈ X and y ∈ Y , respectively, such that,

x = arg min
x̃∈X
‖y − x̃‖0,Ω , (5a)

y = arg min
ỹ∈Y
‖x− ỹ‖0,Ω , (5b)

where ‖•‖0,Ω stands for the norm induced by the inner product defined in (2) and where
additionally the following interface and homogeneous Dirichlet boundary conditions for problems
(5) are satisfied,

y(i) − y(j) = 0 , on each γ(i,j) , (6a)

ω
(
y(i)
)
− ω

(
y(j)

)
= 0 , on each γ(i,j) , (6b)

x = x0 , on Γd , (6c)

y = y0 , on Γd , (6d)

ω (y) = ω0 , on Γd , (6e)

assuming without loss of generality that all Dirichlet boundary conditions are applied along the
same portion of the boundary Γd ⊂ ∂Ω. Furthermore, space X is chosen such that boundary
conditions (6c) are by construction satisfied, that is,

X := {x ∈ X |x = x0 on Γd } . (7)



2 Weak formulation of the problem

To formulate the weak statement of set of problems (5) subject to conditions (6), the following
normal and augmented functionals are defined,

Lx (x) : =
1

2
‖y − x‖20,Ω , (8a)

Ly (y) : =
1

2
‖x− y‖20,Ω +

1

2

∥∥αyχy

∥∥
0,γ

+
1

2
‖αωχω‖0,γ + ‖α̃yy‖0,Γd

+ ‖α̃ωω‖20,Γd
, (8b)

where y(i) − y(j) = χ
(i,j)
y = χ

y
∣∣∣
γ(i,j)

and ω
(
y(i)
)

+ ω
(
y(j)

)
= ω(i) + ω(j) = χ

(i,j)
ω = χ

ω
∣∣∣
γ(i,j)

stand for the interface jumps of fields y and ω (y), respectively. As it can be deduced from the
definition of functionals (8b) the Penalty method is employed for enforcing the interface and
Dirichlet boundary conditions defined in (6a)-(6e) using correspondingly αy, αω, α̃y and α̃ω as
Penalty parameters for problem (5b). On the other hand, condition (6c) is enforced strongly in
problem (5a) as it can be deduced by the selection of space X . The variational formulations of
problems (8) are then obtained when the total variations δLx and δLy are set to zero, that is;
Find x ∈ X and y ∈ Y such that,

ax (δx,x) = lx (δx) , for all δx ∈ X , (9a)

ay (δy,y) = ly (δy) , for all δy ∈ Y , (9b)

where the bilinear forms ax : X ×X → R, ay : Y×Y → R and the linear functionals lx : X → R,
ly : Y → R are defined as follows,

ax (δx,x) : = 〈δx,x〉0,Ω , (10a)

ay (δy,y) : = 〈δy,y〉0,Ω +
〈
δχy, αyχy

〉
0,γ

+ 〈δχω, αωχω〉0,γ + 〈δy, α̃yy〉0,Γd
(10b)

+ 〈δω, α̃ωω〉0,Γd
,

lx (δx) : = 〈δx,y〉0,Ω . (10c)

ly (δy) : = 〈δy,x〉0,Ω , (10d)

Each of variational problems (9) have a unique solution since forms (10a), (10b) are bilinear,
coercive and continuous and functionals (10c), (10d) are bounded.

3 Discretization

Let X h ⊂ X and Yh ⊂ Y be a Finite Element and an isogeometric discretization of spaces X

and Y, respectively. Let also
(
ψj
)m
j=1

and
(
φ

(i)
j

)m(i)

j=1
with i = 1, . . . , n be bases of spaces X h

and Yh, respectively. Subsequently, there exist constants (x̂j)
(m)
j=1 and

(
ŷ

(i)
j

)m(i)

j=1
for each patch

i = 1, . . . , n such that,

x : =

m∑
j=1

ψj x̂j = Ψx̂ , (11a)

y : =

n∑
i=1

m(j)∑
j=1

φ
(i)
j ŷ

(i)
j =

[
Φ(1) · · · Φ(n)

] 
ˆy(1)

...
ˆy(n)

 = Φŷ , (11b)

Ψ, Φ(i) being the basis function matrices for the Finite Element and the isogeometric discretiza-
tion for each patch, respectively. Moreover, x̂ and ŷ(i) stand for the vector of Degrees of Freedom
(DOFs) for the Finite Element and the isogeometric discretizations of each patch, respectively.



Then, Φ and ŷ denote the basis function matrix and the vector of DOFs for the whole multipatch
geometry. Subsequently, the discrete form of variational problems (9a) and (9b), respectively
write,

Cxxx̂ = Cxyŷ , (12a)

Cyyŷ = Cyxx̂ , (12b)

where the involved matrices are defined as,

Cxx,i,j : =
〈
ψi,ψj

〉
0,Ω

, (13a)

Cyy : =

 C
(1)
yy + C

(1)
p · · · C

(1,n)
p

...
. . .

...

C
(1,n)
p · · · C

(n)
yy + C

(n)
p

 , (13b)

C
(i)
yy,j,k : =

〈
φ

(i)
k ,φ

(i)
l

〉
0,Ω

+
〈
φ

(i)
k , α̃yφ

(i)
l

〉
0,Γd

+
〈
ω
(
φ

(i)
k

)
, α̃ωω

(
φ

(i)
l

)〉
0,Γd

, (13c)

C
(i)
p,j,k : =

〈
φ

(i)
j , αyφ

(i)
k

〉
0,γ

+
〈
ω
(
φ

(i)
j

)
, αωω

(
φ

(i)
k

)〉
0,γ

, (13d)

C
(i,j)
p,k,l : = −

〈
φ

(i)
k , αyφ

(j)
l

〉
0,γ

+
〈
ω
(
φ

(i)
k

)
, αωω

(
φ

(j)
l

)〉
0,γ

, (13e)

Cyx,k,l :=
n∑
i=1

〈
φ

(i)
k ,ψl

〉
0,Ω

= Cxy,l,k . (13f)

4 Numerical Results

The applicability of the method is demonstrated using the blades taken from the NREL wind
turbine model [1] within a fluid-structure interaction environment. The real model of the wind
turbine and the corresponding CAD model of its two blades can be seen in Fig. 1. The two
blade CAD model excluding the motor hub, see Fig. 1b, consists out of 64 trimmed patches. An
example of two trimmed patches over the multipatch surface are given in Fig. 2. As structural

(a) Picture of the NREL wind turbine [1].

(b) CAD model of the turbine blades with the rotor
hub.

Figure 1. NREL wind turbine real and CAD model.



(a) Trimmed patch on the tip of one blade. (b) Trimmed patch along one blade’s surface.

Figure 2. NREL wind turbine real and CAD model.

(a) Displacement field on the multipatch isogeometric
structure at the 67th time step.

(b) Mapped displacement field on the fluid interface
mesh at the 67th time step.

Figure 3. Displacement mapping solving problem (9a).

model the Kirchhoff-Love shell model is chosen, whereas the continuity constraints among the
multipatches and the weak application of the Dirichlet conditions is done using the Penalty
method, see [5]. The fluid is solved using the Finite Volume Method within the open-source
program OpenFOAM [2]. The coupled problem is solved using the partitioned Gauss-Seidel
approach. The displacements are mapped onto the fluid FSI interface, see Fig. 3b from the
isogeometric multipatch structure, see Fig. 3a, solving variational problem (9a) whereas the

(a) Traction field on the fluid-interface at the 50th
time step.

(b) Mapped Traction field on the multipatch structure
at the 50th time step.

Figure 4. Traction mapping solving problem (9b).



traction field on the multipatch isogeometric surface, see Fig. 4b, is found when mapping the
traction field from the fluid FSI interface, see Fig. 4a, solving variational problem (9b). The
Penalty parameters for the enforcement of the continuity across the multipatches and the weak
Dirichlet boundary conditions in the mapping equation (9b) are chosen with respect to the
element size across each iterface and each Dirichlet boundary.

Conclusions

Herein an isogeometric mortar-based mapping method is proposed for its application to Fluid-
Structure interaction. The method is enhanced with Penalty terms accounting for the coupling
between the different patches and the weak application of Dirichlet boundary conditions. The
applicability of the method is demonstrated using real world engineering problems which involve
trimmed multipatch geometries thus extending the concept of the isogeometric B-rep analysis to
the mortar-based method for data transfer between isogeometric and classical low order surface
discretizations.
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[6] T. Wang, R. Wüchner, S. Sicklinger, and K.-U. Bletzinger. Assessment and improvement of
mapping algorithms for non-matching meshes and geometries in computational fsi. Compu-
tational Mechanics, 2016.


