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Micro Abstract
Variational multiscale methods for LES of turbulent single- and two-phase flows are presented. To
recover the subgrid-scale velocity, multifractal scale similarity in the enstrophy field of turbulent flow
is exploited. The extended finite element method allows for sharply representing discontinuities at
the interface of two-phase flow on a fixed grid. Various numerical examples, ranging from turbulent
flow past a backward-facing step to turbulent bubbly channel flow, illustrate the methods.
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Introduction

Turbulent flows are omnipresent in the natural environment and the technical field of engineering.
For instance, turbulent boundary layers control the drag acting on aircraft, the turbulent mixing
of fuel and oxidizer enables efficient combustion engines, and the understanding of turbulent
atmospheric flows leads to accurate weather forecasting. In the following, novel computational
multiscale methods for turbulent single- and two-phase flows are briefly presented. The reader
is referred to [4–9] for full methodical details, more elaborate discussions of the approaches and
a thorough presentation of various numerical examples. Motivated by the application to Large-
Eddy Simulation (LES) of turbulent flow, all numerical methods build on the framework of the
Variational Multiscale Method (VMM). First, the Algebraic Variational Multiscale-Multigrid-
Multifractal Method (AVM4) for LES of turbulent single-phase flow is derived. Then, the AVM4

is further enhanced to LES of turbulent two-phase by incorporating it into a face-oriented
stabilized Nitsche-type eXtendend Finite Element Method (XFEM), leading to the eXtended
AVM4 (XAVM4).

1 AVM4 for LES of turbulent single-phase flow

LES of turbulent flow aims at resolving only the larger flow scales, while the influence of the
smaller scales on the larger ones is modeled. The fundamental step of LES is thus the separation
of the larger, resolved scales and smaller, unresolved (or subgrid) scales which is accomplished
here by means of the VMM. Apart from terms depending on the resolved-scale quantities only,
the variational multiscale formulation of the incompressible Navier-Stokes equations exhibits
further terms, in particular the cross- and subgrid-scale Reynolds-stress terms, which include
the unknown subgrid-scale velocity.

To determine the subgrid-scale velocity, multifractal scale similarity in gradient-magnitude fields
of turbulent flows, such as the enstrophy field, is exploited. In the multifractal subgrid-scale
modeling approach, as originally proposed in [2], the subgrid-scale velocity field is calculated
from the subgrid-scale vorticity field via the law of Biot-Savart. The reconstruction of the
subgrid-scale vorticity ω̂, decomposed into its magnitude ∥ω̂∥ and orientation vector êω of unit
length, consists of two steps. First, the magnitude of the subgrid-scale vorticity field is derived



by a multiplicative cascade distributing the subgrid-scale enstrophy ∥ω̂∥2 within each element:
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where δ(·)h denotes smaller resolved scales (i.e., scales between the element length h and a larger
scale αh), N the number of cascade steps and Mn the multipliers determining the multifractal
distribution of the subgrid-scale enstrophy. In a second step, the orientation of the subgrid-scale
vorticity field is determined using an additive decorrelation cascade:

êω(x, t) = Iδehω(x, t) + (1− I)
N∑
n=1

δ∗n, (2)

where I denotes the intermittency factor, defined from a correlation between ω̂ and δωh, and
δ∗n the decorrelation increments. Finally, the subgrid-scale velocity û is obtained from ω̂ via
the law of Biot-Savart as

û(x, t) = Bδuh(x, t), (3)
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The multifractal approximation of the subgrid-scale velocity û depends on the velocity δuh at the
smaller resolved scales. The necessary further separation of the resolved scales into larger and
smaller ones is realized via level-transfer operators from plain aggregation Algebraic Multigrid
methods. The Multifractal approximation of the subgrid-scale velocity is then inserted into
the cross- and subgrid-scale Reynolds-stress terms of the variational multiscale formulation.
The present VMM is completed by accompanying residual-based multiscale terms to provide
a stable numerical method. The final modeled formulation is thus referred to as the AVM4.
Further details of the derivation of the AVM4 may be found in [7]. Extensions of the AVM4 to
passive scalar transport in turbulent flow and to turbulent variable-density flow at low Mach
number are shown in [5, 6].

Figure 1 displays the mean streamwise velocity of turbulent channel flow at friction Reynolds
number Reτ = 395. The velocity is normalized by the friction velocity and plotted in wall
units as usual. Three different grids with 323, 643 and 1283 elements are considered. For
comparison, results obtained with an SUPG/PSPG/Grad-div Stabilized Method (SPGSM), a
(complete) Residual-Based VMM (RBVMM) including the residual-based multiscale forms of
the remaining cross- and subgrid-scale Reynolds-stress term in addition to the SUPG, PSPG
and grad-div term, and a form of the Dynamic Smagorinsky Model (DSM) are shown. Moreover,
Direct Numerical Simulation (DNS) data taken from [3] and marked by “DNS MKM99” are
depicted. The AVM4 provides by far the best results. In particular, the results obtained with
the AVM4 are already for the medium discretization very close to the DNS data such that the
improvement owing to the finer discretization is only of small amount.

2 XAVM4 for LES of turbulent two-phase flow

Next, two contiguous bulk fluids separated by a deformable interface are considered. The fluid
flows on both sides of the interface may be turbulent, and the turbulent structures may also
interact with the interface. The computational grid captures the larger scales in both fluid flows
such that the same modeling situation as for LES of turbulent single-phase flow is encountered
in the bulk flows. The interface is assumed to be resolved in a DNS-like manner, and additional
subgrid-scale modeling with respect to underresolved interfaces is not taken into account.



The interface Γint is considered infinitely thin and, therefore, appears as a discontinuity in the
flow field. At the interface, a localized surface-tension force acts, and density as well as viscosity
change discontinuously, leading to strong and/or weak discontinuities in the pressure field p and
the velocity field u. These discontinuities are expressed in terms of two jump conditions:

JuK = 0 on Γint, (5)J−pI+ 2µε(u)K · nint = −γκnint on Γint, (6)

where the jump operator is defined as J·K := (·)− − (·)+. Interface conditions (5) and (6)
couple the fluid flows in both subdomains, each governed by the incompressible Navier-Stokes
equations. Variables corresponding to the first and the second fluid are marked by (·)+ and (·)−,
respectively. Furthermore, µ denotes the dynamic viscosity, γ the surface-tension coefficient,
which is assumed constant, κ = −∇·nint the curvature of the interface and nint the unit normal
vector on the interface.

To describe the evolution of the interface, the level-set method is applied. The level-set method
captures the interface implicitly on a fixed grid via the zero iso-contour of a signed distance
function and constitutes a convenient way to represent interfaces that are subject to large and
complex deformations as encountered in turbulent flow. However, representing the interface
implicitly leads to elements that are cut by the interface. As a result, the aforementioned discon-
tinuities occur within the element. The XFEM allows for reproducing arbitrary discontinuities
inside elements by enriching the function spaces with appropriate discontinuous functions. To
represent jumps and/or kinks in the pressure and velocity field, jump enrichments based on a
symmetric Heaviside function

Ψ(x, t) =

{
−1 in fluid “-”,

+1 in fluid “+”
(7)

are applied. As the velocity field merely exhibits a kink, but not a jump, Nitsche’s method
is used to weakly couple the two individual fluid flows, i.e., to impose the velocity interface
condition (5). To ensure numerical stability for arbitrary interface locations, face-oriented ghost-
penalty stabilization terms (see, e.g., [1]) are included for intersected elements. Further face-
oriented fluid stabilization terms in the interface region enhance the method to high-Reynolds-
number flows governed by the Navier-Stokes equations. Residual-based multiscale terms in
the interior of the fluid subdomains complete the Nitsche-type XFEM. For further details and
depiction of the complete formulation, the reader is referred to [9].

Combing the face-oriented stabilized Nitsche-type XFEM, briefly described above, with the
AVM4 results in a comprehensive approach to LES of turbulent two-phase flow, which is referred
to as the XAVM4; see [8]. Its application to turbulent channel flow carrying a bubble of the
size of the channel half-width is shown in Figure 2. A visualization of the instantaneous bubble
shape together with vortical structures identified via the Q-criterion and colored by the velocity
magnitude (red color indicates high velocity and blue color low velocity) is depicted.

Conclusions

The AVM4 for LES of turbulent single-phase flow as well as its extension XAVM4 for LES
of turbulent two-phase flow, which is obtained by combining the AVM4 with a face-oriented
stabilized Nitsche-type XFEM, have been presented. Selected numerical results have illustrated
the performance of the proposed methods.
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Figure 1. Mean streamwise velocity of turbulent
channel flow at Reτ = 395.

Figure 2. Instantaneous bubble shape and vortical
structures of turbulent bubbly channel flow.
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