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Micro Abstract
A flexible robot in lambda configuration has been modeled and built in hardware. Since there is no
direct feedback of the end-effector, a nonlinear observer to estimate the position of the end-effector is
designed and implemented. The nonlinear observer results show that the end-effector position can be
estimated with high accuracy. Also, using results from the nonlinear observer, the model of the robot
is improved so that the maximum end-effector absolute tracking error is drastically decreased.
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Introduction

This research investigates the design of a nonlinear observer to estimate the states of a very
flexible multibody dynamic system in order to use them for the trajectory tracking and control.
The observers are widely used in order to estimate the full states of a system, e.g, state estimation
of the linear systems [11], the velocity estimation of the rigid joints [9], and the state estimation
of the minimum phase systems [7]. Hence, a lot of simulation research on the state estimation
of a single flexible link manipulator and the flexible multibody system are investigated, e.g,
design of a linear observer for a flexible multibody system without the passive joint [13], the
nonlinear observer design for a flexible beam [3] and for a flexible multibody system [14]. So far
experimental research is focused only on the observation of a flexible beam [5] to estimate the
vibration of the beam using a laser displacement sensor.

The novelty of this work is, that a high gain observer for trajectory tracking with high speed
of a very flexible parallel robot is designed and the estimates converge to measurement states.
In the proposed nonlinear observer, only the position and the velocity measurement of the
prismatic joints and the deformation of the long flexible link are required to estimate the elastic
and passive states. This nonlinear observer is simulated and implemented on the lambda robot.
Based on the observer results, the model of the very flexible multibody system is improved and
a new observer is redesigned. The new nonlinear observer estimates the system states and the
end-effector position with high accuracy. The experimental results validation verify the accuracy
of the estimation of the end-effector positions and the elastic deformation.

1 Experimental setup

A flexible robot in lambda configuration which has been modeled and built by the Institute
of Engineering and Computational Mechanics of the University of Stuttgart can be seen in
Figure 1a. This robot has highly flexible links as the long and short links. The end of the
short link is connected to the middle of the long link with the rigid bodies. The robot has two
prismatic actuators connecting the links to the ground and the control outputs apply to these
two linear actuators. Also, every link is connected to a passive revolute joint that is located on
the linear actuator. There is another revolute joint that is used to connect two links at the end
of the short link and the middle of the long link. An additional rigid body is attached to the



free end of the long link as an end-effector.

1.1 Flexible Multibody Modeling

To model the lambda robot, the modelling process can be separated into three major steps. At
first, the flexible components of the system are modeled with the finite element method in the
commercial finite element code ANSYS. Next, to have a possible on-line control, the degrees of
freedom of flexible links should be decreased. Therefore, model order reduction is utilized in
order to reduce the long flexible link’s model [1] in the MatMorembs [4]. Then, all the bodies
such as the rigid and flexible parts are modeled as a multibody dynamic system with a kinematic
loop in the academic multibody code Neweul-M2 [8]. The equation of motion is derived by
applying the Newton-Euler equation with D’Alembert’s principle. For the nonlinear systems with
the kinematic loop constraint, the nonlinear equation of motion with the generalized coordinates
q ∈ Rn is written as

Mq̈ + k(q̇, q) = g(q̇, q) +Bu+CTλ , (1a)

c(q) = 0 . (1b)

The mass matrix of the flexible multibody system M ∈ Rn×n is symmetric, positive definite
and depends on the joint angles and the elastic coordinates. The vector k ∈ Rn contains the
generalized centrifugal, Coriolis and Euler forces and g ∈ Rn includes the vector of applied forces
and inner forces due to the body elasticity. The input matrix B ∈ Rn×p maps the input vector
u ∈ Rp to the system. The constraint equations are shown by c ∈ Rq, a Jacobian matrix of
constraint is shown by C ∈ Rn×q and λ ∈ Rq is the reaction force during kinematic loop. Based
on the projection of the constraint Jacobian matrix, the term CTλ can be removed [12]. The
equation of motion is rewritten as follow

Mq̈ + k(q̇, q) = g(q̇, q) +Bu. (2)

Figure 1b shows the modeling result of the flexible parallel lambda robot in Neweul-M2. The
model of the flexible parallel lambda robot includes two active prismatic joints (s1, s2) for which
control inputs are calculated, two passive revelute joints (α1, α2) and some elastic coordinates.

(a) Mechanical setup of the lambda manipulator
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(b) Lambda model in Neweul-M2

Figure 1. Lambda robot in hardware and simulation

2 Nonlinear Observer

A nonlinear system in state space is presented as follow

ẋ = Ax+ g(x) +H(x)u , (3a)

y = Cx , (3b)



where x ∈ R2n, y ∈ Rm and u ∈ Rp are the states, outputs, and inputs of system that is defined
as u = Kx with constant matrix gain K ∈ Rp×2n. The number of actuated joint of flexible
multibody system is defined with p which for the lambda robot is equal to 2. Also, g(x) ∈ R2n,
H ∈ R2n×p, A ∈ R2n×2n, and C ∈ Rm×2n respectively are the continuous nonlinear functions of
system states, constant gain of the states, and the output gain matrices. The nonlinear functions
of states f(x) ∈ R2n is defined as follow

f(x) = g(x) +H(x)u = g(x) +H(x)Kx. (4)

The problem of the states estimation x for the system in Eq. 3 is usually referred to design a
high gain nonlinear observer [6, 10]. Here, the formulation of the observer states is written as

˙̂x = Ax̂+ f(x̂) +L(ŷ − y) , (5a)

ŷ = Cx̂ , (5b)

where x̂ and ŷ are the estimated states and outputs of the observed system. Therefore, the
observer gain L ∈ R2n×q should be designed somehow such that the observed nonlinear system
converges to the real system. The state observation error is different between the estimation and
real system states, which is calculated by e = x̂− x. Hence, the dynamics of observed error is

ė = (A+LC)e+ (f(x+ e)− f(x)). (6)

If the nonlinear dynamic error in Eq. 6 converges asymptotically to zero, it can be concluded that
the estimation state converges to real system states. To show the estimation error converges to
zero, the Lyapunov method and Lipschitz condition are used. The Lyapunov candidate function
and its derivative are defined as

V (e) = eTPe, (7)

V̇ (e) = eT ((A+LC)TP + P (A+LC))e+ (f(x̂)− f(x))TPe+ eTP (f(x̂)− f(x)). (8)

The Lyapanov candidate is defined as positive-definite function for the estimation error as Eq. 7
with an unique positive definite matrix P ∈ R2n×2n. The derivative of the Lyapunov function
should be negative to ensure the estimation error converges asymptotically to zero. Toward
this goal, an additional constraint is required. The nonlinear function f(x) should satisfy the
Lipschitz condition, too. Also, there exists a positive definite matrix Q ∈ R2n×2n that is defined
from

(A+LC)TP + P (A+LC) = −2Q. (9)

Based on the Lipschitz condition, there exists a constant G such that

‖f(x̂)− f(x)‖ 6 G‖x̂− x‖, ∀i = 1, .., n (10)

for all x and x̂ ∈ R2n. Therefore, for Eq. 8, the following inequalities are valid.

V̇ (e) 6 −2eTQe+ 2G‖Pe‖‖e‖ 6 (−2σmin(Q) + 2Gσmax(P ))‖e‖2. (11)

Here, σmin(Q) is the minimum singular value of the matrix Q and σmax(P ) is the maximum
singular value of the matrix P . In order to have a negative derivative of the Lyapunov function,
this condition should be satisfied for matrices Q and P .

σmin(Q)

σmax(P )
6 G (12)

Finally, the above conditions show the estimation error asymptotically converge to zero. The
observer gain matrix L and unique matrix P are provided by satisfying Eqs. 9, 10 and 12.



3 Experimental Results

The designed observer is used to the model improvement, states, and end-effector position
estimation. In order to compare two models and validate the estimation results for the position
of the end-effector and the elastic coordinates, a camera and a strain gauge are used. The
camera tracks the end-effector position off-line. Also, to validate the estimation results of elastic
coordinates, the deformation of a strain gauge and observer for the long link are compared.
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(b) Strain of long link

Figure 2. Experimental comparison of two model for nonlinear and linear trajectories

The nonlinear observer design conditions in Eqs. 9, 10 and 12 show the observed system states
converge to the real system states. Based on this, the observed position must converge to the
measurement position of the end-effector. While based on the model situation-1 in [2], the
observed positions did not converge to the measurement positions of the end-effector. To solve
this problem, the modeling parameters are observed. Based on the observation and measurement
height and stiffness of the flexible beam is decreased. Then, the model of the flexible parallel
manipulator is improved which are shown in Figure 2 as a situation-2. The experimental results
show that the model situation-2 decreases the maximum and oscillation error for the linear and
nonlinear trajectories.

The results of observer estimation in online processing are shown in Figure 3. The estimations of
the elastic coordinates of elastic deformations of the long link track are as accurate as the strain
gauge measurements. Comparing the off-line camera measurements and the online estimation
results, demonstrates the accuracy of the proposed observer based on the model situation-2.
This shows the position of the end-effector and the elastic states converge to the real value. The
observer based on the situation-2 of model estimates the end-effector positions with an accuracy
of about 1 millimeter maximum absolute error for a linear and about 2.5 millimeter maximum
absolute error for a nonlinear trajectory.
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Figure 3. Compare measurement results of the camera and strain gauge with observer results based on the
model situation-1 and situation-2 for the linear and nonlinear trajectories

Conclusions

In this contribution, a nonlinear observer was designed and applied experimentally to a very
flexible multibody system. The nonlinear observer is designed based on the position and velocity
of prismatic joints and only the deformation of the long link. Also, the stability and convergence
of the dynamic error of the estimation states based on the Lyapunov candidate function was
shown. The experimental results for the very flexible parallel robot showed that the observer
successfully tracks the measurements. Also, the observer estimates the nonlinear system states
and end-effector positions with high accuracy.
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