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Micro Abstract
We present the simulation of two-phase composites, consisting of a ferroelectric and a magnetostrictive
phase, which generate a magneto-electric coupling. A two-scale finite element homogenization approach
is performed. The typical hysteresis loops of the phases are approximated by considering the switching
behavior of the spontaneous polarizations and the implementation of a Preisach operator.

1Institute of Mechanics, University of Duisburg-Essen, Essen, Germany

*Corresponding author: matthias.labusch@uni-due.de

Introduction

Ferroic materials are characterized by particular coupling behaviors, such as electro-mechanical
interactions in ferroelectric materials or magneto-mechanical interactions in magnetostrictive
materials. They provide many applications in modern technical devices, which are used for
sensors, actuators or data storage media. A further special phenomenon, which could improve
these technical devices is the magneto-electric (ME) coupling. It is denoted by an interaction
between magnetic fields and electric polarization or electric fields and magnetization. Such
ME multiferroics enable Magneto-Electric Random Access Memory (MERAM) devices, see
e.g. [1,5]. However, due to physical reasons, only very few natural materials with magneto-electric
properties exist. They show their weak ME coupling far below room temperature. Magneto-
electric two-phase composites, consisting of a ferroelectric matrix material with magnetostrictive
inclusions, are a promising alternative. Figure 1 depicts the design of such composites. The idea
of such composites is to generate the desired ME effect as a strain-induced product property,
see [6]. In the case of ME composites, we distinguish between the direct and converse ME effect.
The direct effect characterizes magnetically induced electric polarization, where an applied
magnetic field yields a deformation of the magnetostrictive phase. These deformations are
transferred to the ferroelectric phase, which result into a strain-induced polarization due to
its electro-mechanical properties. The converse effect characterizes an electrically activated
magnetization.

1 Two-scale Homogenization Scheme

The main idea of the FE2-Method is the homogenization of microscopic quantities to obtain
macroscopic constitutive equations instead of defining a macroscopic material model. Therefore,
the macroscopic strains, electric and magnetic fields at each macroscopic integration point are
localized to an underlying representative volume element (RVE). The microscopic weak forms
of the balance equations have to be solved. A following homogenization step determines the
macroscopic quantities which are transferred to the associated points on the macroscale. Finally,
the macroscopic boundary value problem is solved, whereby the entire procedure is repeated
until an equilibrium state on both scales is reached, see [4].



Figure 1. Design of magneto-electric two-phase composites. The typical polarization, magnetization and
strain hysteresis curves of the corresponding phases as well as the resulting ME behavior are depicted.

1.1 Two-scale transition approach

The macroscopic body B ⊂ R3 is parameterized in the Cartesian coordinates x. The fundamental
balance laws are the balance of momentum and the Gauß’s laws of electro- and magneto-statics

divx[σ] + f = 0 , divx[D] = 0 and divx[B] = 0 (1)

where • denotes the macroscopic quantities, σ the stresses, f the body forces, D the dielectric
displacement and B the magnetic induction. The macroscopic strain ε, electric E, and magnetic
field H depend on the displacements u, the electric φ and magnetic potential ϕ as

ε = sym[∇xu] , E = −∇xφ and H = −∇xϕ (2)

with the macroscopic gradient operator ∇ with respect to x. The constitutive equations are ∆σ
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where the quantities on the left hand side are defined as volume integrals over the RVE . The
macroscopic fields of each integration point are localized on the RVEs, where we have to
apply suitable boundary conditions on the microscopic level. Therefore we assume that the
individual parts of a generalized magneto-electro-mechanical Hill-Mandel condition have to be
fulfilled independently [4]. Possible periodic boundary conditions can be obtained by assuming a
decomposition of the microscopic strains, electric and magnetic fields in a macroscopic part and
a fluctuation field. The overall tangent moduli Z are calculated by a homogenization approach,
with the generalized right-hand-sides L and the global stiffness matrix K as

Z =
1

V

∫
RVE

Zdv − 1

V
LTK−1L . (4)

For a more detailed derivation of the macroscopic material tangent we refer to [4].



1.2 Ferroelectric material model

To characterize the ferroelectric phase, we use a magneto-electric enthalpy function which
represents the tetragonal symmetry of barium titanate, see [3]. The total strains and the electric
displacement are decomposed into an elastic and a remanent part as

ε = εe + εr and D = De + P r with P r = Ps c and εr =
3

2
εsdev(c⊗ c) (5)

with the spontaneous polarization Ps and strains εs. Depending on a switching criterion
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based on [2], the preferred direction can change its direction. Thereby, the switching criterion for
i = 2, ..., 5, checks if the change of free energy for possible switching options is larger than the
dissipated work during a switching process. In each microscopic integration point an orientation
distribution function representing the ferroelectric domain structure is attached.

1.3 Magnetostrictive material model

The magnetostrictive material behavior is described with a three-dimensional Preisach model.
Therefore, we additively decompose the magnetic induction and the strains into an elastic part
(•e) and a remanent part (•r), where the linear part is described by a transversely isotropic
linear material law. The nonlinear remanent magnetization is described by the Preisach operator
and the remanent strains depending on the current magnetization state are defined as

M r = p(H)a and εr =
3

2
εs
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]
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with the saturation magnetization Ms and the saturation strain εs. Since the butterfly hysteresis
curve of cobalt ferrite shows a softening behavior for higher magnetic fields, as can be seen
in Figure 1, the remanent strains depend additionally on a virtual softening magnetization
M soft

r = psoft(H)a. The remanent magnetization M r is determined through the Preisach
operator as

p(H,a) =

∫
β

∫
a
lphaω(α, β)γ(α, β)H(t) · adαdβ . (8)

In this model the preferred direction aligns with the direction of the microscopic magnetic
field. This involves an update of the material tangent moduli as well as a switching of the
corresponding Preisach relays. However, a direct switching of the orientation could lead to a
back-and-forth switching of the preferred direction and the Preisach relays. In order to prevent
this numerical instabilities a time dependent rotation process is implemented, where a fraction
of the total angle θtotal, between the local microscopic magnetic field and the orientation, defines
the rotation angle θrot during one load step with

θtotal = acos

[
an ·H

||an|| · ||H||

]
, θrot = −tanh[κθ · t̃] · θtotal and an+1 = R(θrot)an (9)

where κθ = x/dt denotes the rotation speed depending on the time step dt and R the rotation
matrix for the transformation of the direction of the last time step an into the new direction
an+1. In order to adjust the magnetostrictive hysteretic behavior the piezomagnetic modulus
depends on the current magnetization state as
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with the piezomagnetic coupling parameters in q̂



Simulations of magneto-electric composites

For the simulation of the magneto-electric coupling a composite consisting of a ferroelectric matrix
with cylindrical magnetostrictive inclusions is considered. In a first step the matrix material is
loaded with an electric field in order to polarize the material and to obtain electro-mechanical
coupling properties. Several simulations with different electric field strengths demonstrate the
dependence of the piezoelectric properties on the overall magneto-electric coupling. After this
pre-polarization, an alternating magnetic field is applied on the composite, which causes the
nonlinear deformations of the magnetostrictive inclusions. Due to the strain-induced interaction
the magneto-electric coefficients for different polarization states are investigated, see Figure 2.
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Figure 2. Resulting a) dielectric displacement (E3 kV/mm vs. D3/Ps), b) magnetostriction (H3 kA/mm vs.
ε33/εs), and c) ME coupling (α33 vs. H3 kA/mm) of a two-phase magneto-electric composite.

Conclusions

The FE2-method is used to determine the effective properties of a two-phase magneto-electric
composite. The desired magneto-electric coupling depends significantly on the the piezoelectric
and magnetostrictive properties of the corresponding phases. Therefore, two nonlinear material
models are implemented, which describe the hysteretic behaviors of the phases. Numerical
simulations demonstrate that this approach is capable of describing the magneto-electric coupling
in such composites. An accurate fitting of the material parameters and the investigation of
different microstructures could lead to promising predictions of the ME coefficient.
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