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Micro Abstract

A two-scale finite element (FE) and fast Fourier transform (FFT) based thermo-mechanically
coupled model is proposed. The method is developed for the prediction of the structural material
behavior and the corresponding local fields of elasto-viscoplastic polycrystalline materials. It allows
for a qualitative investigation of the microscopic interplay between stress and temperature induced
martensitic phase transformation and plasticity.
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Introduction

Polycrystalline materials (e.g. steels) have superior mechanical properties and are thus impor-
tant for numerous technically relevant applications. The prediction of the effective behavior of
these materials represents an enormous challenge. This is due to the fact that the distribution,
morphology and orientation of individual grains on the microscopic level strongly influence the
macroscopic structural response. In addition, complex interactions between different deforma-
tion mechanisms (e.g. plastic slip and martensitic phase transformation) on the micro scale can
occur and affect the mechanical behavior. As a consequence, two different continuum scales
need to be studied in order to capture the microstructural influence on structural finite ele-
ment (FE) simulations. Recently, [6] and [3] published finite element and fast Fourier transform
(FFT) based methods to predict the local and effective mechanical response of heterogeneous
materials. Compared to the classical multiscale finite element or FE2 method this approach
exhibits significant advantages with respect to computational efficiency [5].
In this work a two-scale FE-FFT based and thermo-mechanically coupled material model for-
mulation for elasto-viscoplastic polycrystalline materials is developed. Temperature and stress
induced martensitic phase transformations are considered. Following [1], a meso-scale descrip-
tion of the crystal configurations, based on the volume fractions λi of the different martensite
variants, is derived. The direction of plastic dislocation motion is prescribed by up to 48 differ-
ent slip systems and depending on the crystal system and grain orientation. The evolution of
plastic slip is modeled by means of a power law based flow rule in accordance with [4].

1 Material model

To solve the thermo-mechanically coupled multiscale problem it is essential to fulfill the me-
chanical equilibrium (2) and energy balance (3) at both scales. In what follows, macroscopic
quantities are denoted by the subscript M and microscopic fields by no index to distinguish
between the two scales.
The macroscopic boundary value problem is solved by employing the finite element method.
The microscopic structure is embedded at the Gauss-points of each element, to deduce the
form of the constitutive relation between macroscopic strain εM and stress σM and further the



macroscopic internal heat sources rM . To this end the macroscopic strain and temperature θM
are transferred to the microscale, during the FE solution procedure. The unknown macroscopic
quantities (σM , rM ) are subsequently determined by finding the solution of the local problem
and are obtained from homogenization of the corresponding micro-scale quantities. Figure 1
gives an overview of the proposed scale transition and solution method.
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Figure 1. Overview of proposed scale transition and solution method

The microstructure is embedded as a unit cell of the domain Ω at each xM ∈ ΩM with periodic
boundary conditions. To solve the local problem we additively decompose the total microscopic
strain

ε(x,xM ) = ε̄(xM ) + ε̃(x) (1)

into the mean strain ε̄ and the local fluctuation ε̃. The homogeneous contribution ε̄ is equal
to the macroscopic strain εM and therefore independent of x ∈ Ω. Thus, using FFT-based
solution schemes the local strain fluctuation around the mean strain represents the primary
unknown of the local, nonlinear mechanical equilibrium condition.

div(σ(x, ε, θ, ξ)) = 0 forx ∈ Ω (2)

In addition ξ is a set of local internal variables representing plastic slip and martensitic phase
transformation.
The time- and length-scale of the underlying unit cell can be assumed much smaller than their
counterparts in the macro-scale. We therefore presume that macroscopic temperature changes
affect the temperature at each point of the micro structure instantaneously and simultaneously.
Consequently, the macroscopic temperature will be represented as a steady state, homogeneous
temperature field on the micro scale.
However, dissipative effects on the micro scale due to plasticity and phase transformation should
not be neglected throughout this work. Hence the local temperature field is divided conceptually
into the homogeneous macroscopic temperature contribution θM and a transient heterogeneous
field θL. Based on the previous considerations, we only need to pass the macroscopic tempera-
ture and not its gradient to the unit cell, to solve the local reduced energy equilibrium:

ρCv θ̇(x) = ρCv( θ̇M
︸︷︷︸

≈0

+θ̇L(x)) = r(x, ε, θ, ξ))− div(q(x, θ)) forx ∈ Ω (3)

Here, Cv is the heat capacity storage, ρ denotes the density and q represents the heat flux
vector.



We postulate an additive decomposition of the Helmholtz free energy

Ψ(ε,γ,λ, θ,x) = Ψe(ε,γ,λ, θ) + Ψp(γ, θ) + Ψt(λ, θ) + Ψθ(θ) (4)

,where Ψe is the elastic energy density. The stored energy due to plastic work is represented by
Ψp and depends on the slip γ = {γα} on each slip system α and the temperature. The energy
associated with martensitic transformation Ψt is a function of λ = {λi} the volume fraction of
all martensite variants λi and the temperature. The thermal energy density is Ψθ. The stress
and entropy η are governed by

σ =
∂Ψ

∂ε
, η = −

∂Ψ

∂θ
(5)

and the evolution equations of the internal variables

λ̇i = fi

(

−
∂Ψ

∂λi

, θ

)

, γ̇α = gα

(

−
∂Ψ

∂γα
, θ

)

(6)

are functions of the associated driving forces and the temperature. In accordance with [4] the
evolution of the plastic strain is obtained by a power law based flow rule being solved by an
algorithm proposed by [7]. Following [1] a kinetic potential is introduced to determine the
evolution of transformation.

The computational solution procedure for the local problem is based on fast Fourier transforms
and Newton-Krylov methods and a staggered implicit time integration scheme is applied. To
this end, the local mechanical boundary value problem is solved first. In a staggered update,
the heterogeneous temperature field and martensitic phase evolution of the underlying unit cell
is determined. The components of the global algorithmic tangent are calculated numerically by
finite differences, which requires a repeated performance of the microscopic solution procedure.
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Figure 2. Macro- and microscopic results for thermo-mechanical loading conditions



2 Computational example

We study a simple virtual experiment to provide an insight into the capabilities of the model.
The proposed formulation is implemented as an extension to the finite element software FEAP.
A plane strain example is considered. At each Gauss-point of the fully integrated, 8-node, cubic
finite elements a polycrystalline micro structure is embedded. The latter is composed of 100
grains with random orientation φz. In figure 2 the thermo-mechanical loading and boundary
conditions as well as the results for this loading sequence are displayed for selected fields on the
macro (finite element model) and on the micro scale (unit cell).
Considering macroscopic steady state temperature conditions, we obtain a constant, macro-
scopic temperature gradient in x-direction (see figure 2). Hence, the primarily temperature
induced evolution of martensite is distributed heterogeneously on the macro scale . On the
micro scale a complex interplay between plasticity and transformation arises. Plastic deforma-
tions are initiated in grains that are oriented poorly for transformation and provide a bridge
across less transformed regions. All these results are qualitatively consistent with experimental
observation and the prediction of e.g. [2] and [1].

Conclusions

The proposed FE-FFT-based method represents an efficient and novel tool to predict the local
and structural response of polycrystalline materials under thermo-mechanical loading conditions.
The model allows for various further investigations of the interplay between crystal plasticity,
martensitic transformation and the corresponding dissipative effects.

Acknowledgements

Financial support of subproject M03 of the Transregional Collaborative Research Center SFB/TRR
136 and project RE 1057/41 by the German Science Foundation (DFG) is gratefully acknowl-
edged.

References

[1] K. B. A. W. Richards, R. A. Lebensohn. Interplay of martensitic phase transformation and
plastic slip in polycrystals. Acta Materialia, 61:4384–4397, 2013.

[2] K. Bhattacharya and R. V. Kohn. Stress-induced phase transformations in shape-memory
polycrystals. Archive for Rational Mechanics and Analysis, 196:715–751, 2010.

[3] J. Kochmann, J. R. Mianroodi, S. Wulfinghoff, B. Svendsen, and S. Reese. Two-scale, FE-
FFT- and phase-field based computational modeling of bulk microstructure evolution and
macroscopic material behavior. Computer Methods in Applied Mechanics and Engineering,
305:89–110, 2016.

[4] J. Kochmann, S. Wulfinghoff, S. Reese, and B. Svendsen. An efficient and robust multiscale
FE-FFT-based computational approach for the prediction of the structural material behavior
and accurate micromechanical fields of powerlaw polycrystals. Submitted for publication
2016.

[5] A. Prakash and A. Lebensohn. Simulations of micromechanical behavior of polycrystals:
finite element versus fast fourier transforms. Modelling and Simulation in Materials Science

and Engineering, 17:16pp, 2009.

[6] J. Spahn, H. Andrae, M. Kabel, and R. Müller. A multiscale approach for modeling pro-
gressive damage of composite materials using fast fourier transforms. Computer Methods in

Applied Mechanics and Engineering, 268:871–883, 2014.
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