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Micro Abstract

In biological tissue, the proliferation of metastases is governed by nutrient-driven cell division. In a
continuum-mechanical model based on the Theory of Porous Media, the proliferation is described
via mass production terms. Therein, the constitutive approach for the growth of the metastases is
implemented either by a Monod-type or a logistic growth function. In both cases, the results are
compared to cancer-cell-growth experiments.
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Introduction

The proliferation of cancer cells in biological tissue such as the brain tissue can be described by a
Monod-type equation or a logistic growth (Verhulst-type) equation, cf. [4, 5]. The Monod-type
equation relates the growth rate to the nutrient concentration, whereas in the Verhulst-type
equation the cancer-cell concentration is the driving force. In this contribution, a continuum-
mechanical model of cancer-cell proliferation implements these equations as mass-production
terms and gives the possibility to compare simulation results to in-vitro experimental data of
lung-cancer cells, which are capable of metastasing the brain.

Metastatic proliferation model

The fundamental framework of the multi-component continuum-mechanical model is given by
the Theory of Porous Media (TPM), cf. [2]. Therein, superimposed and interacting continua
stem from the volumetric homogenisation of the microstructure in a representative elementary
volume. In particular, the constituents ϕα of the model are the liquid-saturated solid skeleton
ϕS , namely the brain cells, and the two immiscible pore liquids ϕβ , where β= {I, B} represent
the interstitial fluid ϕI and the blood ϕB . Furthermore, the interstitial fluid is described as a
real mixture of interacting components ϕIγ . Therein, the proliferation and basal reactions of
the cancer cells ϕIC are decreasing the nutrients ϕIN and gain their mass from the solvent ϕIL.
As a result, mass-production terms are included in the governing balance equations of mass
and momentum. In particular, the adapted governing equations are given by the concentration
balance for ϕIC and ϕIN (1)1, the volume balances for ϕβ (1)2 and the overall momentum
production (1)3, yielding
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Therein, the volume fraction of ϕI is referred to its solvent nI ≈nIL and the solid volume
fraction is integrated resulting in nS =nS

0J
−1

S , where J−1

S is the Jacobian determinant of the



solid. Furthermore, (·)′S is the material time derivative with respect to the solid. Besides the
solid deformation uS , the primary variables of the system are the partial pore-liquid pressures
pIR and pBR as well as the concentrations cIDm and cINm . In the closure of the system, the entropy
inequality is evaluated leading to the constitutive setting of the model. The seepage velocities
wβ of the pore liquids and the seepage velocities of the components wIγ can be identified as
Darcy-like, respectively Fick-like equations, viz.:

nβwβ = −
KSβ

µβR
[ grad pβR − ρβR g ] and nIcIγmwIγ = −DIγ grad cIγm + nIcIγmwI . (2)

In (2), KSβ indicates the second-order intrinsic permeability tensor and DIγ refers to the
diffusivity. Moreover, the body force g corresponds to the gravity and µβR is the effective shear
viscosity. Evaluating the summed stresses

∑
α T

α=TS
Emech− p I reveals the composition of

the overall pore liquid pressure p= sIpIR + sBpBR, where sβ =nβ/(1 − nS) is the saturation,
and TS

Emech the mechanical extra stress of the solid. In particular, TS
Emech is described by a

neo-Hookean model, cf. [3].

Constitutive equations for proliferation

The model is assumed to be a closed system restricting the overall mass production
∑

α ρ̂
α =0.

Nevertheless, individual components are able to gain or lose mass, cf. [7]. Herein, the cancer
cells proliferate and gain mass ρ̂IC⊕ . As a result of the basal cancer cell reactions and the growth
process, nutrients are consumed and decline in mass ρ̂IN⊖ . The nutrient consumption provides
the energy for the proliferation, whereas the required mass for the cell division corresponds to
the decline of the interstitial fluid solvent ρ̂IL⊖ = ρ̂IC⊕ − ρ̂IN⊖ . The interplay between the gain and
loss ensures the above mentioned closed system restriction by ρ̂I =− ρ̂IL⊖ + ρ̂IC⊕ − ρ̂IN⊖ =0. In
particular, ρ̂IN⊖ is proportional to the cancer-cell concentration and its mass-production term.
Furthermore, a Monod-type equation and a Verhulst-type equation are applied to the mass-
production term of the cancer cell and later on compared to lung cancer cell-growth experiments.
The Monod-type equation explicitly relates the mass-production term ρ̂IC⊕ to the nutrient con-
centration, cf. Figure 1 a. Besides, the cancer cells require a sufficient nutrient concentration
c̄INm to sustain their proliferation, viz.:

ρ̂IC⊕ = cICm M IC
m µIN

⊕

cINm − c̄INm
KIN + cINm − c̄INm

. (3)

Therein, KIN is the nutrient concentration at µIN
⊕ /2 and M IC

m resembles the molar mass of the
cancer cells. Moreover, the specific growth rate µIN

⊕ changes according to the amount of the
cancer cells. This property originates from the spatial arrangement of the proliferating cells in
a spheroid, where cells proliferate less in the centre, cf. [1].
Moreover, the Verhulst-type equation is proportional to the cancer cell concentration cICm , cf.
Figure 1 b, yielding

ρ̂IC⊕ = cICm M IC
m κIC(1 −

cICm
c̄ICm

), (4)

where κIC resembles the proliferation rate and c̄ICm is the highest possible cancer-cell concentra-
tion referring to the initiation of a macrometastasis.

Comparison to experimental data

For the comparison of the introduced proliferation descriptions, the adapted governing equations
are transformed to their weak forms and are numerically solved for the primary variables within
the FE tool PANDAS. Therein, Taylor-Hood elements are applied for the spatial discretisation
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Figure 1. (a) Monod-type equation approaches the specific growth rate µIN
⊕ and is dependent of cINm and

the constant KIN . (b) The Verhulst-type equation has a maximum at c̄ICm /2, reaches zero for the extremes
and is dependent on cICm , the maximum concentration c̄ICm and the constant κIC .

and an implicit Euler time-integration scheme for the temporal discretisation. In the initial-
boundary-value problem, cancer cells are seeded in the centre of a circular domain and start to
migrate and proliferate. The nutrient concentration is fixed at the outer boundaries and gets
reduced according to its mass-production term during the proliferation process. Consequently,
a time series of cancer-cell concentration is generated.
Concerning the lung-cancer experiments, the volumetric proliferation data of the lung-cancer
spheroids are averaged from four different proliferation series including five to eleven cancer-cell
spheroids.
For the comparison between the simulations and the experimentals, a comparative scalar,
namely the total number of cells N IC

total, is identified.
For this purpose, the cancer-cell concentration of the continuum-mechanical model cICm is related
to the local bulk fluid volume dvI =nIdv, the molar mass of the cells M IC

m and the number
of cells per volume M IC , cf. [6], leading to the number of cells N IC

model = cICm dvIM IC
m M IC . Ad-

ditionally, a summation throughout the model domain at each time step is carried out giving
N IC

model total =
∑

N IC
model.

The volume data Vges of the spheroid-growth experiments are divided by the volume of a single
cell VIC , assuming full contact between every cell, resulting in the total cancer-cell number
N IC

data total =Vges/VIC . Moreover, N IC
model total is then fitted to N IC

data total by manually adjusting
the proliferation parameters µIN

⊕ ∝µIN
⊕ (µIN

fast, µ
IN
med), respectively κIC . Besides the estimated

proliferation parameters, as shown in Table 1, a parameter deviation of ± 25% is included in
Figure 2 illustrating a range for the parameter modification as well as the response of the model.

Monod-type Logistic-type

µIN
fast = 1.60 · 10−6 [ 1/s ]

µIN
med = 6.42 · 10−7 [ 1/s ] κIC = 1.33 · 10−6 [ 1/s ]

Table 1. Manually fitted parameters of the proliferation descriptions

Conclusions

In this contribution, a continuum-mechanical model for cancer-cell proliferation was introduced,
wherein the mass-production term was either described by a Monod-type or a Verhulst-type
equation.
Finally, the sum of least squares at the measurement times

∑
(N IC

model total −N IC
data total)

2 is cal-
culated revealing the quality between the proliferation descriptions, cf. Table 2. The shown
sum of least squares illustrates the better agreement of the data involving the Verhulst-type
equation. Therefore, this proliferation description is favourised for further studies. Neverthe-
less, both proliferation descriptions are in the range of the standard deviation of the experiments.
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Figure 2. Cancer cells were grown as a spheroid over the time period of 13 days. The data points
correspond to the mean ± standard deviation of the calculated number of cells (purple). The simulation
results are indicated in green for the Monod-type equation and in blue for the Verhulst-type equation. The
dashed lines correspond to a 25% deviation of the estimated parameters. The lung-cancer experiments are
performed at the Institute of Cell Biology and Immunology, University of Stuttgart, Germany.

Monod-type Logistic-type

3.15 · 10+4 2.31 · 10+4

Table 2. Sum of the least squares between the experiments and the continuum-mechanical model applying
the Monod-type and the Verhulst-type equation to the mass-production term.

In conclusion, both equations are capable of simulating the experimental data. The Monod-
type equation contains more biological aspects, and the Verhulst-type equation offers a simpler
description.
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[7] P. Schröder, A. Wagner, and W. Ehlers. Towards the continuum-mechanical modelling of
metastatic tumour growth in the brain. PAMM, 15(1):107–108, 2015.


