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Micro Abstract
In this paper, an explicit time integration scheme for finite element solution of contact-impact problems
with stabilization of contact forces is presented. The stability limit for an un-penalized system is
preserved by the bipenalty method, i.e. a special choice of mass and stiffness penalty parameter ratio.
Moreover, the time stepping process produces stable results for a large range of the stiffness penalty
parameter. Behavior of the method is shown on a one-dimensional impact problem of elastic bars.
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Introduction

Accurate and robust numerical modelling for contact-impact problems is still an up-to-date
and open problem. Frequently, penalty methods, Lagrange Multiplier methods or augmented
Lagrangian methods and more others can be applied for modelling of dynamic contact problems,
e.g. see [2, 3, 10]. In explicit finite element method, the penalty method is preferred due to its
simplicity [2]. On the other hand, in the penalty method, the stability limit is cardinally destroyed
by a large value of numerical stiffness penalty parameter for enforcing contact constraints. One
way how to eliminate this effect is to use the bipenalty method [5].

A big trouble in numerical modelling of contact-impact problems comes from spurious oscillations
of contact forces often caused by activation and deactivation of contact constraints during
computations of a response. There exist a lot of numerical techniques and strategies for
elimination and stabilization of solution due to spurious oscillations on contact surfaces. We can
mention the stabilized implicit Newmark method for non-smooth dynamics and contacts [4, 7],
mass redistribution techniques [8], singular mass techniques [11, 12] or the stabilized explicit
scheme with penalty method [14].

In this paper, we present an explicit time integration scheme for finite element solution of
contact-impact problems with stabilization of contact forces based on work [14] in combination
with the bipenalty formulation [9]. Superior behavior of the presented method for modelling of
contact-impact problems is shown on an impact problem of elastic bars and commented. The
obtained results are compared with a standard time integration scheme in explicit finite element
method for impact-contact problems - the central difference method [1].



1 Bipenalty method in finite element method for contact-impact problems

In the finite element procedures [1] for elastodynamic problems with contact constraints, the
equations of motion yield the following system of nonlinear ordinary differential equations

Mü + Ku = R(t)−Rc(u, ü) (1)

where M is the mass matrix, K is the stiffness matrix, u and ü are nodal displacements and
accelerations, R is the vector of external loading with time dependency, t is the time, Rc is the
vector of contact forces. In the bipenalty formulation [9], the global contact residual vector Rc

is assembled from the local counterpart R̂c as the contribution of stiffness and mass terms to
contact residual vector which can be written as

R̂c(û, ¨̂u) = M̂p
¨̂u + K̂pû + f̂p (2)

where

M̂p =

∫
Γc

εmH(g)NNT dS K̂p =

∫
Γc

εsH(g)NNT dS f̂p =

∫
Γc

εsH(g)Ng0 dS (3)

Here, M̂p is the additional elemental mass matrix due to inertia penalty, K̂p is the additional

elemental stiffness matrix due to stiffness penalty, and f̂p is the part of the elemental contact
force due to the initial gap g0; g is the gap function; H(g) is the Heaviside step function for
prescribing active or inactive contact constraints; εm and εs are mass and stiffness penalty
parameters; Γc is the contact surface between bodies; the matrix N represents an operator from
the displacement field u to the gap function gN in the contact

gN = NTu + g0 (4)

The particular form of the matrix N follows from the used contact discretization. A comprehensive
overview can be found e.g. in [13].

2 Explicit time integration schemes for contact-impact problems

We now consider the time integration of the semi-discretized system (1) in the framework of the
central difference method [1]

(Mt + Mt
p)

ut+∆t − 2ut + ut−∆t

∆t2
+ (Kt + Kt

p)ut + f tp −Rt = 0 (5)

Assuming that displacements are known at time t − ∆t and t, one can resolve unknown
displacements at time t+ ∆t, where ∆t marks the time step size. Note, that the matrices Mt

p

and Kt
p are time-dependent because they are associated with active contact constraints.

Explicit central difference scheme for contact-impact problems: In this paper, we use
the following form of the central difference scheme for solving elastodynamic problems with
contact constraints [1] with the flowchart:

• Given ut, u̇t−∆t/2, Rt

• For given ut analyze contact, compute gap vector g and contact forces f tp = −Kt
put + f0

p

• Compute accelerations üt = (Mt + Mt
p)−1(Rt −Ktut + f tp)

• Mid-point velocities u̇t+∆t/2 = u̇t−∆t/2 + ∆tüt

• New displacements ut+∆t = ut + ∆tu̇t+∆t/2

• t→ t+ ∆t

Here, we used the lumped version of mass matrix M by the row-summing.

Stabilized explicit time integration scheme for contact-impact problems: In the work
of Wu [14], the fully explicit time integration scheme with stabilized technique for contact-impact
problems has been published and tested. The mentioned time integration scheme takes the
following flowchart with splitting of bulk and contact accelerations:



• Given ut, u̇t−∆t/2, Rt

• Compute accelerations of predictor phase üt
pred = M−1(Rt −Kut)

• Mid-point velocities of predictor phase u̇
t+∆t/2
pred = u̇t−∆t/2 + ∆tüt

pred

• Displacements of predictor phase ut+∆t
pred = ut + ∆tu̇

t+∆t/2
pred

• For given ut+∆t
pred analyze contact, compute gap vector g and contact forces fp pred =

−Kput+∆t
pred + f0

p

• Compute accelerations of corrector phase üt
corr = (M + Mp)−1(fp pred)

• Compute total accelerations üt = üt
pred + üt

corr

• Mid-point velocities of corrector phase u̇t+∆t/2 = u̇
t+∆t/2
pred + ∆tüt

corr

• New displacements of corrector phase ut+∆t = ut + ∆tu̇t+∆t/2

• For given ut+∆t analyze contact, compute gap vector g and contact forces f t+∆t
p =

−Kput+∆t + f0
p

• t→ t+ ∆t

In this two-time step scheme, bulk accelerations in the predictor phase üt
pred are due to internal

and external forces and they are computed with the standard lumped mass matrix as for
a contact-free problem. After updating of velocities and displacements, contact constraints are
analyzed and contact forces fp pred are computed. For these contact forces, contact accelerations
in the corrector phase are computed with the additional penalized mass matrix.

Both mentioned explicit time integration schemes are tested in the numerical benchmark below.

3 Stability limit of the bipenalty method

It is known that the standard penalty method [2], where an additional stiffness term corresponding
to contact boundary conditions is applied, significantly attacks the stability limit of the finite
element model. Generally, the critical time step size rapidly decreases with increasing penalty
stiffness [2]. On the other hand, this numerical effect can be eliminated by a special choice of
additional mass penalty term - the bipenalty method [5]. The stability limit for the bipenalty
method has been studied in [9], where the optimal ratio of stiffness and mass penalty parameters
were found. The critical time step size associated to contact-free bodies is preserved for this
optimal setting of mass penalty parameter with respect to the stiffness penalty parameter. Thus
stability limit for the contact problem is not attacked by the stiffness penalty term. In principle,
one can integrate contact-impact problems by an arbitrary stable time step size.

4 Numerical test - one-dimensional impact of two bars with different lengths

In this example, we study a one-dimensional contact-impact problem of two elastic bars with
different lengths defined in [6]. A scheme of this test is depicted in Figure 1. The left bar is
moving to the right with a constant velocity v01 = 0.1 [m/s]. The right bar with fixed right-hand
side is at rest. The geometrical, material and numerical parameters were set up: the lengths
L1 = 10 [m] and L2 = 20 [m], the Young’s modulus E1 = E2 = 100 [Pa], the mass density
ρ1 = ρ2 = 0.01 [kg ·m−3], the cross-sectional area A1 = A2 = 1 [m2], the number of finite
linear elements for each bar n1 = 50, n2 = 100, thus the finite element lengths are set up
as h1 = h2 = 0.2 [m], the initial contact gap g0 = 0 [m], the duration time T = 0.7 [s]. The
value of the contact force from the analytical prediction is Rc = 0.05 [N] for t = 0 . . . 0.2 [s] and
t = 0.4 . . . 0.6 [s] and zero otherwise. The standard lumped mass matrix and ”consistent” mass
penalty matrix were used in computations.

Let us define dimensionless stiffness and mass penalty parameters for one-dimensional cases, βs

and βm, as follows

βs =
he
E
εs, βm =

2

ρhe
εm (6)
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Figure 1. A scheme of an one-dimensional impact of two bars with different lengths.

where he is the length of the finite element whose master node is on the contact interface. In [9],
the optimal penalty ratio of stiffness and mass penalty parameters for one-dimensinal cases is
given by the value βm = 1

2βs. The time step size was chosen as ∆t = 0.5he/c0, where c0 =
√
E/ρ

is the wave speed in a bar. Thus, the Courant dimensionless number C used for time integration
was set as C = c0∆t

he
= 0.5. It should be mentioned that the CFL (Courant-Friedrichs-Levy)

condition for the linear finite element method with lumped mass matrices in the one-dimensional
case reaches the value Ccr = 1.

Figure 2. Time history of contact force for impact of two bars with different lengths - the central difference
method with Courant number C = 0.5 for βs = {0.25; 0.25e2; 0.25e4; 0.25e8} and optimal bipenalty
stabilization setting.

In Figures 2 and 3, one can see the time histories of contact forces between two elastic bars from
Figure 1 computed by the central difference method and stabilized explicit scheme. In both
cases, the bipenalty method with the optimal ratio of stiffness and mass penalty parameters
were used. The time histories are presented for several values of dimensionless stiffness penalty
parameter as follows βs = {0.25; 0.25e2; 0.25e4; 0.25e8}. One can see that results for βs = 0.25
for both used time schemes exhibit excellent progress, because this value of βs corresponds to
stiffness of the finite element in contact. On the other hand, the results of the central difference
method for higher value of βs shown significant spurious oscillations of contact forces, where
force amplitudes grow up with value of stiffness penalty parameter βs. In Figure 3, the results
for the stabilized explicit scheme are presented for higher values of βs. In principle, for higher
βs, one can see the contact force histories independent of βs. Further, the stabilized explicit
scheme produces robust and stable results for contact forces for a large range of stiffness penalty



parameters including extremely higher values.

Figure 3. Time history of contact force for impact of two bars with different lengths - the stabilized explicit
method with Courant number C = 0.5 for βs = {0.25; 0.25e2; 0.25e4; 0.25e8} and optimal bipenalty
stabilization setting.

Conclusions

We have presented a numerical approach for finite element solution for contact-impact problems
with stabilization of spurious contact oscillations. The stabilization is based on the bipenalty
enforcement of contact constraints and modification of the explicit method with separation
of bulk and contact accelerations. Based on the numerical test, we can conclude that the
motivated approach is an efficient tool for accurate modeling of contact-impact problems with
small pollution of contact spurious oscillations. The results obtained by the stabilized explicit
scheme in connection with the bipenalty method are less sensitive to the choice of the penalty
parameter in contrast to standard approach. In future work, we will focus on multidimensional
implementation and testing and also on lumping of penalized additional mass matrix.
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