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Micro Abstract
We present a generic framework for thermomechanically coupled gradient-enhanced plasticity theory
based on variational constitutive updates, i.e., all relevant equations are fulfilled by minimizing an
incremental potential. Within the numerical implementation, the exact derivatives of this potential are
computed by means of hyper-dual numbers. By doing so, the laborious task of implementation is
highly reduced.
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Introduction

In almost every field of engineering and beyond, there exists a vast amount of processes exhibiting
significant thermomechanical interactions. Particularly in metals, a strong coupling between
thermal and mechanical behavior can be observed. To run sufficiently accurate simulations
of these processes, a well-founded theory has to be formulated on the basis of which efficient
numerical schemes can be developed. State-of-the-art implementations of thermomechanically
coupled theories are usually based on staggered or monolithic algorithms in order to solve balance
of linear momentum and the problem associated with heat conduction. The heat increase due to
dissipative plastic deformation is frequently computed using an empirical model often referred
to as the Taylor and Quinney-Factor. Consequently, the first law of thermodynamics is ignored.
By way of contrast, Yang, Stainier and Ortiz used the first law of thermodynamics in [4] for the
thermomechanical coupling. Furthermore, by using a Hu-Washizu principle and an integrating
factor, they proved that the coupled theory shows a variational structure.
The general variational framework in [4] is suitable for the development of different thermomechan-
ically coupled material models. In the present work, the time necessary for the implementation
of models within this framework is reduced by means of numerical differentiation based on
so-called hyper-dual numbers. According to [2], hyper-dual numbers allow to compute the first
as well as the second derivative of a function exactly – in sharp contrast to other numerical
differentiation schemes.
An isotropic finite strain von Mises plasticity model is implemented to showcase the performance
of the aforementioned framework. To capture length scale effects, a gradient enhancement is
embedded into the model, cf. [1]. Simulations of necking in a bar show the ability of the model
to predict the experimentally observed thermomechanical response.

1 Gradient enhanced thermoplasticity

1.1 Gradient enhancement

Within nowadays established local (finite strain) plasticity theory, a higher gradient is incorpo-
rated in line with [1]. Denoting the Helmholtz energy of the local models by ψloc = ψloc(•, α)



which depends – among other variables – on the equivalent plastic strain α, energy of the
extended model reads

ψnonloc(•, α, ϕp) = ψloc(•, α) +
1

2
c [ϕp − α]2︸ ︷︷ ︸

=:ψintr

+
1

2
µ l2e ‖GRADϕp‖2︸ ︷︷ ︸

=:ψglobal

The underlying idea is to introduce a new global field ϕp, additionally to the placement ϕ, which
is coupled to the equivalent plastic strain α, using the penalty term ψintr with penalization factor
c. Based on this new field, a higher-order gradient term is embedded into the model by means of
the energy ψglobal. This energy depends on the gradient of ϕp and thus captures a length scale
le while µ denotes the shear modulus. This way, the local constitutive model is unaffected. In
particular no inequality condition resulting from the Karush-Kuhn-Tucker conditions has to be
solved on global level.
The proposed method has been shown to effectively regularize pathological mesh-dependencies
in the softening regime (see [1]). Additionally, non-local plastic behavior is achieved, which
extends the model to describe non-local phenomena like e.g. the well-known Hall-Petch effect.

1.2 Variational formulation of thermoplasticity

Usually, thermomechanically coupled problems do not show a variational structure – in sharp
contrast to the isothermal case, where variational principles like the postulate of minimum
potential energy are widely applied. However, as shown in [4], an extended variational principle
can also be derived for thermomechanically coupled problems. Without going too much into
detail, the proposed time-continuous functional is given by

L :=

∫ t

t0

[∫
Ω

[
Ė −Θ Ṅ + f Dint + χ

]
dV − Pϕ̇ + PΘ

]
dt

depending on integrating factor f := Θ/∂NE, temperature Θ, entropy N , internal energy E,
internal dissipation Dint, dissipation potential χ(Θ) describing the Fourier-type heat-flux and
external mechanical as well as thermal powers Pϕ̇ and PΘ. Balance of linear momentum as well
as the first law of thermodynamics follow naturally by means of the stationary conditions of this
functional. To be more precise,{

ϕ̇, ϕ̇p,Θ, Ṅ , α̇
}

= stat
{ϕ̇,ϕ̇p,Θ,Ṅ ,α̇}

L .

This elegant formulation yields many advantages, including a symmetric albeit indefinite tangent,
which gives the possibility of applying highly efficient and robust solution schemes.

2 Implementation using automatic differentiation based on Hyper-Dual Numbers

In order to solve the saddle-point problem discussed before, the first and the second derivative
of the underlying (time discretized) potential have to be computed if a Newton-type algorithm
is to be implemented. While a symbolical differentiation is regarded as the most accurate and
fastest method (w.r.t. program runtime), it is usually very time consuming and error-prone
within derivation and implementation. Here, a numerical differentiation scheme proposed in [2]
is applied, which computes the first as well as the second derivative in an exact manner. The
algebra utilized within this scheme is similar to the ordinary complex numbers and is called the
algebra of hyper-dual numbers. These numbers have non-real components εi with properties

εi εj = εj εi ε2i = 0 .



In [2], the authors have shown by expansion of the Taylor series that first and second derivatives
of a real function f(x) can be obtained by simultaneous perturbation in two dual directions, e.g.

df

dx

∣∣∣∣
x0

=
D1 f(x∗)

a

d2f

dx2

∣∣∣∣
x0

=
D12 f(x∗)

a b

with x∗ = x0 + a ε1 + b ε2 + 0 ε1 ε2. D1 • and D12 • represent the coefficients of the first dual and
of the mixed dual component, respectively. In contrast to widely applied schemes like finite
differences, the magnitude of perturbation here does not influence the precision of the scheme
and thus, for the sake of simplicity, can be chosen as a = b = 1.
In [3] this framework was successfully applied to isothermal plasticity models.

3 Numerical example

A prototype implementation of a thermomechanically coupled gradient-enhanced elasto-plasticity
model with a von Mises yield criterion is considered here. Based on this model, a cyclically
loaded plate with a hole is analyzed, see Fig. 2 (due to symmetry of the problem, only the first
quadrant is depicted).
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Figure 1. Temperature evolution for different loading velocities – the point with the highest temperature
increase is considered.

The point showing the highest temperature increase due to plastic deformation is monitored
in Fig. 1. Accordingly, the distribution of the plastic strains is almost independent of the
loading velocity (rate-independent model). By way of contrast, the temperatures are higher for
higher loading velocities (smaller ∆t). This is in line with the physical problem governing heat
conduction.

Conclusion

The presented work proposes an elegant and efficient framework for the implementation and de-
velopment of gradient-enhanced, thermomechanically coupled plasticity models. The variational
formulation yields, besides many other advantages, the possibility to apply an exact numerical
differentiation scheme based on the algebra of hyper-dual numbers. A prototype model showed
the features as well as the advantages of the resulting framework.
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Figure 2. Distribution of temperature Θ (upper row) and equivalent plastic strain α (lower row) for different
loading velocities (duration ∆t of a cyclic loading is varied). (Left column) ∆t = 1 s; (middle column)
∆t = 5 s; (right column) ∆t = 20 s. Higher loading velocities (smaller ∆t) lead to higher temperatures. The
limiting case ∆t→ 0 characterizes adiabatic conditions.
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