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Micro Abstract

In this contribution a primal discontinuous Petrov Galerkin Finite Element Method (dPG FEM) with
a linear elastic isotropic material model is presented. This novel mixed discretization method was
introduced by Demkowicz and Gopalakrishnan in 2010. The behavior of this formulation is studied
with benchmark simulations for small deformations in the nearly incompressible case. Furthermore, a
possible extension for a nonlinear Finite Element formulation is suggested.
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Introduction

In the engineering practice, due to their reliability, standard Galerkin Finite Element Methods
are a powerful tool in solid mechanics since decades. Also the mixed finite element technology
is popular in linear elasticity for stress approximations and robust for (nearly) incompressible
material behaviour as the Poissons ratio v tends to 0.5 in the limiting case. However, there are
still several applications that limit the use of standard finite element schemes. These are related
to locking in various forms, like shear or volume locking. In this contribution, we concentrate on
the phenomenon indicated as volume locking which can lead to failure of a numerical method
when constraints, as related to incompressible material behaviour, are not taken into account
properly. The focus of this research topic is on the introduction of a novel discretization method
for linear elasticity, which is able to overcome the phenomenon of volume locking. The basis
for this is the discontinuous Petrov-Galerkin (dPG) Finite Element Method (FEM) proposed
recently by L. Demkowicz and J. Gopalakrishnan in [2, 3] for the transport equation and by C.
Carstensen et al. in [1] for the Poisson model problem.

Formulation

In this section, we provide the derivation of the weak form of the dPG FEM for linear elasticity.
We consider a domain 2 given in Fig. 1 with the governing equations for linear elasto-statics:
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Figure 1. Domain ), with Dirichlet boundary e(u) = %(grad(u) + gradT(u))

I'p and Neumann boundary I'y.



In Eq. (1), o denotes the stress tensor, p the mass density and b the body forces in the domain
Q. The expression for the static boundary condition, o - n = t, with the normal vector n, is
defined on the Neumann boundary 'y as the traction vector t. Prescribed displacements on the
Dirichlet boundary I'p are denoted by u, and the linear elastic relation between stresses o (€)
and strains e(u) are achieved by the isotropic fourth order material tensor C. The general weak
form can now be obtained by multiplication of the balance of linear momentum in Eq. (1); with
a test function 1 and integration by parts on a single triangle 7" of the triangulation 7

/a(e) :grad(n) dA — /0' nprnds = /pb -mn dA. (2)
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Besides the classical interpolation of element displacements u, the occuring boundary integral
0T with the tractions (o - nr) at the interface of adjoined elements is also evaluated. In this
context an additional variable tt for the tractions is introduced resulting in a mixed formulation
with displacements u and tractions tt as primary unknowns. The weak form for the primal
discontinuous Petrov-Galerkin FEM can now be obtained by summing up over all triangles T' of
the triangulation 7 and yields

/grad%c(n) :C:grad(u) dA — Z /nT tr ds = /nT -pb dA, (3)
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where gradyc denotes the non-conforming gradient with which a discontinuity in the space
of the test functions is introduced. The second integral in Eq. (3) describes the summation
of the contributions from tractions at the edges of all elements in the domain. For further
implementation of the dPG FEMs weak form in a finite element framework triangular elements
with six nodes, each with two degrees of freedom (dof), are used (cf. Fig.2). The three corner
nodes are related to the displacements u and the three mid-side nodes refer to the tractions
tT at the edge. Due to introducing tractions on the interfaces between elements, respect has
to be given to the direction of the unit outward normal vector on coinciding edges (see Fig. 2)
and a preferred or positive flow direction has to be determined. Afterwards, the discretization
of displacements u, tractions tp and test functions 7 is introduced to achieve a low-order
finite element formulation. Here, standard Lagrangian polynomials for the approximation of
the displacements u and the test functions n are used. Furthermore, the interpolation of the
tractions t is accomplished with constant functions on the edges. Following, the discretized
weak form of the primal dPG FEM in a matrix notation is utilized, which is more convenient
than a direct index implementation, and yields
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where N contains the linear Lagrangian shape functions over the triangular element, N the
constant shape functions on the edges and B the derivatives of the linear shape functions.
With e the approximation of the unknowns u and t, respectively, and the test function 7 is
characterized.In order to evaluate the integrals numerically an appropriate Gauss quadrature
scheme on the domain 2 as well as on the edge OT is applied. This results in a mixed system of
equations consisting of two matrices (A (6 x 6) and D (6 x 6)) from the volume and boundary
term (cf. Eq. (5)).



As a consequence, the element stiffness matrix has a non-square shape due to the use of the
same test functions for both primary variables:

G(6x12)

with A= [B] -Cyp-B;dV, D= [NF.N;ds, f=[NJ pbdV.
Q oT Q
Consider two neighbouring triangular finite elements (cf. Fig.2) whereas each has three nodes
for displacements (o) and three nodes for tractions (¢) with two degrees of freedom per node,
leads to 12 degrees of freedom per element. Furthermore, continuity for displacements @1 and
tractions t is assumed, but due to utilization of discontinuous test functions, assembling is at
first only accomplished for the primary variables reducing the amount of degrees of freedom to
18 instead of 24 for decoupled elements. The non-continuity due to the interpolation of the test
functions as non-conforming or broken, results in test functions which “live” on each element

separately. The global system of equations for two adjoined elements then yields a matrix of
size G (12 x 18).
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Figure 2. left: Global node numbering for displacement degrees of freedom (o) and traction degrees of
freedom (©). right: description of preferred direction of normal vector on coinciding element interfaces.

A global stiffness matrix of square shape and a right hand side with matching size is obtained
by multiplication of the left and right hand side after assembly with the transposed of the
non-square linear system of equations G”. Since G - G leads to a rank deficiency resulting in a
singular matrix, a stabilization matrix M is introduced in terms of an integral formulation over
the domain with the test functions appearing in the weak form:

M = [ (eradfem) : € gradc(n) + 07 ) d4. (6)
Q

Afterwards, a square shaped and symmetric system of equations is achieved by GTM™!G - % =
GTM~'f, with % the vector of unknowns. After introducing Dirichlet and Neumann boundary
conditions the system can be directly solved for the unknowns @ and t.

Results

In this example, the performance of the proposed formulation is tested and compared with
classical Galerkin finite elements and mixed finite element formulations for the well-known
Cook’s Membrane problem.



System setup: —+
right side: tp = (0,1) [N/mm?]

upper & lower side: tr = (0,0) [N/mm?| .
left side: u = (0,0) [mm]

Young’s modulus: E = 210 [N/mm?|

Poisson’s ratio: v = 0.499 .
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Figure 3. left: Material parameters and boundary conditions. right: Geometry of Cook’s Membrane problem.

In Fig.4 the convergence of the vertical displacement during mesh refinement is shown for
different classical Galerkin formulations (left) and mixed formulations (right) compared to the
proposed mixed T1-dPG formulation. The T1-dPG formulation has a better convergence than
elements with linear interpolations (T1 & Q1), but is still insufficient compared to higher-order
elements (T2 & Q2) and mixed finite element formulations in the nearly incompressible case.
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Figure 4. Convergence of vertical displacement of the top right point for the dPG FEM compared to classical
Galerkin formulations (/eft) and mixed formulations (right).

Outlook

The primal dPG FEM for linear elastic material behaviour will be tested extensively for further
benchmark tests and compared with well-known finite element formulations. In a next step,
investigations on the extension and implementation of a nonlinear primal discontinuous Petrov-
Galerkin Finite Element Method (e.g. St. Venant or Neo-Hookean material) are conducted.
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