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Micro Abstract
This presentation gives a short review on the Fiber-Orientation-Evolution models commonly used
in commercial softwares. The basis of the considered models is Jeffery’s equation from 1922 which
describes the motion of a single ellipsoidal particle in a Newtonian fluid. The later models extend
Jeffery’s equation for many fiber system, with the use of Fiber-Orientation-Tensors. Models are dis-
cussed up to the o-iARD-RPR model (Tseng 2016), and compared considering representative flow modes.
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Introduction

The anisotropic mechanical properties of a discontinuous fiber reinforced polymer part mainly
depend on the fiber orientation distribution. To forecast the direction dependent properties, the
production process has to be simulated which is commonly injection- or compression molding.
The next session gives an overview of the several, so-called fiber orientation evolution models
which were developed in the last few decades. Two of these models are implemented and
compared considering representative flow modes and different closure approximations. Through
the Abaqus VUMAT (Vectorized User Material) interface the Folgar-Tucker model with the
quadratic closure is implemented and applied for the compression molding of a plate.

Model equations

Jeffery’s equation

The foundation for all considered fiber orientation evolution models is Jeffery’s equation [6]
which describes the motion of a single ellipsoidal particle in a Newtonian fluid

ṅα = W̄ [nα] + ξ̄(D̄[nα] − (nα ⊗ nα ⊗ nα)[D̄]) , ξ̄ =
ā2 − 1

ā2 + 1
, ā = l̄/d̄. (1)

The normalized orientation vector of a fiber α is noted with nα and ṅα indicates the material
derivative of it. The effective vorticity and rate-of-deformation tensors are W̄ and D̄, respectively.
The geometry factor ξ̄ is defined through the aspect ratio ā of a representative fiber with the
length l̄ and diameter d̄. The dyadic product is noted with ⊗ and a linear mapping with [ ]. A
modern derivation of Jeffery’s equation can be found in [7].

Numerically it is more efficient to use fiber orientation tensors [1] instead of modeling each of
the fibers. The empirical, reducible second and fourth order fiber orientation tensors of the first
kind [8], belonging to M pieces of fibers, are defined as

N̄ =
1

M

M∑
α=1

nα ⊗ nα , N̄ =
1

M

M∑
α=1

nα ⊗ nα ⊗ nα ⊗ nα. (2)



With the use of these fiber orientation tensors Jeffery’s equation can also be written in a tensorial
form

˙̄Nh = W̄ N̄ − N̄W̄ + ξ̄(D̄N̄ + N̄D̄ − 2N̄∗[D̄]). (3)

The upper index h indicates that (3) describes the reorientation for the case that only hydrody-
namic forces are acting. The forth order fiber orientation tensor N̄ is marked with a ∗ in (3),
because different approximations can be used to calculate it. The simplest one is the quadratic
closure [4]

N̄Quad = N̄ ⊗ N̄ . (4)

This formula is only exact for unidirectional fiber orientation distributions. For more precise
calculations, in this paper, the Invariant Based Optimal Fitting (IBOF) closure [3]

N̄IBOF = β̄1 sym(1 ⊗ 1) + β̄2 sym(1 ⊗ N̄) + β̄3 sym(N̄ ⊗ N̄)+
β̄4 sym(1 ⊗ N̄N̄) + β̄5 sym(N̄ ⊗ N̄N̄) + β̄6 sym(N̄N̄ ⊗ N̄N̄)

(5)

is used. The rule, how to calculate β̄i, i = 1 . . . 6, as a function of the second and third invariants
of N̄ , is given in [3]. The sym( ) operator calculates the symmetric part of its argument and 1
notes the second order identity tensor. There are several other types of closure approximations
which are not considered in this paper.

Extensions of Jeffery’s equations

To consider the effect of the fiber-fiber interaction Folgar and Tucker (FT) [5] added an isotropic
rotary diffusion term to (3)

˙̄NFT = ˙̄Nh + 2C̄I ˙̄γ(I − 3N̄) , ˙̄γ =
√

(2(D̄ · D̄)) , C̄I = f̄(c̄f). (6)

The FT model predicts to fast fiber reorientation in comparison to experiments. To slow down
the fiber reorientation Wang et al. introduced the Reduced Strain Closure (RSC) model [11].
To be able to predict Anisotropic Rotary Diffusion (ARD) Phelps and Tucker introduced the
ARD model [9] which can be combined with the RSC model. The ARD-RSC model includes 6
phenomenological parameters. To reduce the number of these parameters Tseng et al. introduced
the objective improved ARD model with Retarding Principal Rate (o-iARD-RPR) [10] which
contains only 4 phenomenological parameters.

Numerical implementation and results

Representative flow modes

The tensorial form of Jeffery’s equation (3) and the Folgar-Tucker model (6) are implemented
with the quadratic (4) and IBOF closures and compared for representative flow cases. The
investigated shear, elongational, compressional and planar flow cases are the same as described
in [2]. The initial fiber orientation distribution is isotropic. The similarities and differences
of the four investigated models are represented here on the example of the N̄xx component vs.
the von Mises equivalent strain εM, considering the shear (Figure 1a)) and the elongational
(Figure 1b)) flow.

2D Eulerian press model

A fluid material model is implemented through the VUMAT interface. This fluid model is tested
for simple shear, elongation and compression, with the help of a one element Lagrangian model,
and it is proven that the numerical results match the analytical solutions.



Figure 1. The evolution of the the N̄xx component in a) shear flow and b) in elongational flow

Figure 2. 2D Eulerian press model in Abaqus, a) initial state, before compression, b) end state, after
compression

For the 2D Eulerian press model the Folgar-Tucker equation (6) with the quadratic closure (4)
are implemented. The 2D, Eulerian press model is depicted in Figure 2.

The initial fiber orientation distribution is planar isotropic in the x-y plane. The final spatial
distribution of the diagonal components of N̄ are represented in Figure 3.

Conclusions

With the introduced 2D Eulerian press model the shell-core-shell fiber orientation layers can be
analyzed, and all of the constitutive equations can be modified. The shell layer is not modeled
correctly yet, because the actual model does not consider the high temperature gradients at the
contact surface of the press plate and the compressed material. The model can be developed to
investigate the effect of the anisotropic effective viscosity [2].
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