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Micro Abstract
In this contribution, the scaled boundary formulation is proposed as a discretization technique which
is based on the isogeometric concept. By this means, the representation of a solid body is given
by the boundary surface of the body and a radial scaling parameter which is used to describe the
interior. NURBS shape functions are employed to define the geometry as well as to approximate
the solution field. The numerical examples are given for elasto-plastic material behavior at small strains.
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1 Introduction

In computer aided design (CAD), geometrical 3D models can be represented through a set of
bounding surfaces as shown in Figure 1. By this means, a scaling center C is chosen in the
interior domain which allows a decomposition of the 3D model in several subdomains known
as sections. The same concept is also applicable to 2D geometries as shown in the examples
of this contribution. A further property of CAD is the parametric description of surfaces and
curves with NURBS functions. In the context of numerical mechanics, this property is exploited
by isogeometric analysis (IGA) which was first introduced in [2]. In this analysis method, the
solution field is interpolated by NURBS and CAD knot insertion serves as the discretization
method. Based on the previously mentioned domain decomposition and the application of IGA
for the numerical simulation, the scaled boundary approach [4] is introduced and applied in this
contribution, see [3] and [1]. For the sake of simplicity, the method is studied for the case of 2D
problems. For the same reason, the linear elastic context is given in the first formulations which
is afterward extended to plasticity at small strains.

Figure 1. CAD modeling of a solid with boundary representation.

2 Parametrization

A 2D geometric CAD model can be decomposed in subdomains Ωs by prescribing a scaling
center C as shown in Figure 2. In a carthesian coordinate system (x̂-ŷ), the position of C is



given by x̂0.

Figure 2. Parametrization of geometry.

Similarly to the geometric interpolation scheme used in FEM analysis, the boundary curve ∂Ωs

of a subdomain is given as a linear combination of shape functions and nodal coordinates,

xs = Nb(η)Xs. (1)

Here Nb(η) is a matrix containing NURBS functions while Xs is a vector which contains the
coordinates of the CAD control points. The parameter η is generally chosen to be 0 ≤ η ≤ 1. For
a point x̂s in the interior of the domain Ωs a scaling parameter ξ with 0 ≤ ξ ≤ 1 is introduced.
Accordingly, the position of a point in Ωs is given by

x̂s = x̂0 + ξ(xs(η) − x̂0). (2)

It should be noted that for ξ = 0 the point x̂s coincides with the scaling center x̂0, while for
ξ = 1 a boundary point xs is addressed. All remaining kinematic relations, as e.g. the Jacobi
matrix, which are necessary for the formulation of the boundary value problem (BVP) are basicly
derived from (1) and (2).

3 Numerical approximation

NURBS basis functions are provided by the CAD model in order to represent boundary surfaces
in 3D or boundary curves in 2D. For the boundary (circumferential) direction they are defined
by

Ri,p(η) =
Ni,p(η)wi∑nbc
k=1Nk,pwk

. (3)

The functions Ni,p(η) are recursively defined B-Spline functions of order p while wi are corre-
sponding weight factors for the control points. The number of control points of the boundary
of a specific subdomain (grey area in Figure 3) is denoted by nbc. They are represented by an
orange surrounding in Figure 3. The NURBS functions in scaling (radial) direction are defined
in the same manner,

Rj,q(ξ) =
Nj,q(ξ)wj∑ncp

m=1Nm,qwm
, (4)

in which ncp is the number of control points in scaling direction (blue points in Figure 3). The
boundary curve of a 2D geometry is obtained by the linear combination of NURBS and the
coordinates X̂i of the control points,

x̄s =

nbc∑
i=1

Ri,p(η)X̂i. (5)

The same ansatz, which represents the backbone of IGA, is also applicable to the displacement
field of the boundary, thus

ūs =

nbc∑
i=1

Ri,p(η)Ûi, (6)



Figure 3. Description of geometry with NURBS.

in which Ûi are the displacements associated to the control points of the boundary, however
they are functions of the scaling parameter ξ. Accordingly, the vectors Ûi are arranged in the
vector Us which is given as

Us(ξ) = Ns(ξ)Uj (7)

The displacement response of a given subdomain is approximated by,

u(ξ, η) = Nb(η)Us(ξ). (8)

Substituting (7) in (8) provides the displacement field in dependency of the basis functions in
both directions,

u(ξ, η) = Nb(η)Ns(ξ)Uj , (9)

in which Nb(η) and Ns(ξ) are matrices containing the NURBS shape functions.

4 Numerical examples

4.1 Linear analysis

The first example regards the benchmark of the infinite plate with circular hole under uniaxial
loading. For the numerical simulation, the geometry of the plate is defined as shown in Figure 4.
The stress fields from the analytical solution in are applied on the Neumann boundary while

Figure 4. Plate with circular hole.

a) b)

Figure 5. Convergence rates, a) L2 Norm and b) H1 Norm.

symmetry conditions are prescribed on the displacement boundary. The polynomial order of
the NURBS functions are set identical in scaling and circumferential direction, p = q. The
results of the L2 and H1 error norm from the comparison of the analytical and numerical
displacement field are shown in Figure 5. The results shown the convergence behavior of the
mesh by h-refinement as the number of control points increases. Furthermore, a p-refinement
leads to higher convergence rates.



4.2 Nonlinear analysis

The nonlinear analysis considers a plate with circular hole for elasto-plastic material behavior
at small strains, σ = C(ε − εp). The boundary conditions are identical to the ones of the
linear analysis in section 4.1, see Figure 6 (left). The material parameter are: Young’s modulus
E = 100, Poisson’s ratio ν = 0.3, thickness h = 1, yield stress σy = 5 and linear hardening
H = 10. The polynomial orders are set for both directions to p = q = 6. The total number of
control points for the boundary is defined as NB and the control points per line in the scaling
direction as NC . The number of radial control points is set as NC ≥ ceil(NB/4)+pC as suggested
in [1]. Elasto-plastic analysis is performed for a fixed discretization with NB = 50 and NC = 20.
For the comparison of the results, a standard FEM simulation is considered. A finite element
mesh with linear isoparametric elements and the same degrees of freedom is employed for the
comparison. The deformed meshes for the FEM analysis and the proposed scaled boundary
NURBS approach are depicted in Figure 6 (middle). To compare the results of both simulations,
the horizontal displacement at the upper left corner is evaluated. The displacement of the
considered point in dependency of the applied load are shown in Figure 6 (right). The result of
the proposed approach is in very good agreement with the solution of the finite element method.
Further studies on the choice of p, NB, q and NC for optimal convergence with respect to FEM
are subject of future research.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

L
o
a
d
 f
a
ct

o
r 

[λ
]

Displacement [u ]A

FEM
Proposed

A
uA

tractions from exact solution

tr
ac

ti
o
n
s 

fr
o
m

 e
x
ac

t 
so

lu
ti

o
n

T=10λx

R=1h=1

C

4

4 Proposed

FEM

Figure 6. Left: Problem geometry and loading. Middle: Deformed plate. Right: Load displacement curve.

5 Conclusions

It has been shown that the proposed formulation is perfectly suitable for the boundary representa-
tion modeling technique in CAD. It combines the isogeometric analysis with the scaled-boundary
finite-element formulation and it is extendable for nonlinear material behavior. Further develop-
ments include the extension to geometrical nonlinearity and 3D analysis.
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