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Micro Abstract
The optimal design of passive vibration control is a challenge for both application and research. These
design methods are based on of structure optimization and models are typically solved in frequency
domain. This work explores the benefits of introducing state-space methods on passive control. We
propose an optimization approach based on the design of the limit cycles of mechanical systems
under periodic forces. We exploit the analogy between damping optimization and energy harvesting
to address simultaneously both technologies. An example of energy harvesting optimization is presented.
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Introduction

Control of vibrations is common practice in both mechanical [2, 11] and civil engineering [10]
to improving the performance of mechanical structures. When such control is done by adding
passive elements as masses, springs or dampers, we speak of passive control of vibrations. Among
all the structure optimization problems related to mechanical engineering, those of energy
harvesting and damping design for passive control are of great relevance. In fact, the regulation
of the dissipated energy is the key physical phenomenon that drives both technologies. In this
paper we present a general formulation for optimization problems which allows to address both
problems, damping optimization and energy harvesting within the same framework.

Given the complexity of formulating such optimization problems, several approaches have been
proposed. We briefly classify those methods in (i) frequency domain approaches (e.g. [9]), (ii)
time domain or state space approaches (e.g. [4,5]) and (iii) inverse eigenvalue problems (e.g. [3]).
In this paper we propose a state-space damping optimization method for linear mechanical
systems. We achieve to combine the benefits of state-space methods and frequency-domain
methods thanks to an asymptotic analysis. We formulate an optimization problem of a generic
infinite-horizon integral objective function of the form

P =

∫ ∞
0

L(u) dt, (1)

where u is the state variable of our mechanical system and L is the Lagrangian. To address
this optimization problem, we leverage on the proof that under certain assumptions, a linear
visco-elastic mechanical system under a periodic force with fundamental period T0 converges
asymptotically to a limit cycle with the same fundamental period. This allows addressing the
objective function (1) in the steady-state of the system even in cases when that integral diverges.
We derive an explicit analytical expression û(t, x) of the limit cycle, where x is the vector of
design variables and t ∈ [0, T0] is a time-like parameter.



Model of the vibrating system

Consider a generic linear mechanical system with n degrees of freedom, governed by the equation

m q̈ + d(x) q̇ + k q = F (t), (2)

where m and k are the mass and stiffness n×n matrices, respectively, F (t) ∈ Rn is the generalized
external forces vector, and q ∈ Rn is the vector of generalized coordinates of the system. The
matrix d(x) is damping matrix, which here depends on x, the design variables. To write the

system (2) in the state-space we introduce the state vector u ∈ R2n defined as u =
[
qT q̇T

]T
.

Therefore, the system (2) has the following form in the state-space

u̇ = A(x)u+ f(t), (3)

where

A(x) =

[
0 I

n
−m−1k −m−1d(x)

]
, (4)

where I
n
is the n×n identity matrix and f =

[
0 F T

]T
. System (3) has the well known solution

u(t, x) = Φ(t, x)ui +

∫ t

0
Φ(t− s, x)f(s)ds, (5)

where ui are the initial condition of the system, and Φ is the state transition matrix associated
to the homogeneous solution of the linear equation (3), defined by

Φ(t, x) = eA(x)t. (6)

This solution lacks of the simplicity of traditional analysis, where the steady state solution is
derived from the linear superposition of the normal modes, but it has the outstanding benefit of
being a general solution of (2) without any kind of suppositions on such a mechanical system.
In particular we exploit two good properties of this solution. Firstly, we are not constrained to
use a particular form of damping, e.g., proportional damping. Secondly, we can derive general
conditions for the existence of limit cycles from the stability of the system. However, at a first
glance, the expression (5) makes difficult a direct analysis of the steady-state behaviour of the
system. In the next section we prove that this is possible without the use of Fourier of Laplace
transform, remaining in the time domain.

Determination of the limit cycle

A necessary property of the mechanical system (2) to converge to a limit cycle is the asymptotic
stability of the homogeneous system associated to (3). A sufficient condition for that is the three
matrices m, d(x) and k are positive definite [6]. If, further, the matrix A(x) is diagonalizable,
the state transition matrix has the following properties:

lim
t→∞

Φ(t, x) = 0 (7)

‖Φ(t, x)‖ < 1 ∀t > 0. (8)

These two properties of the state transition matrix allow us to state the following theorem which
prove may be found in [8]:

Theorem 1 Consider the system (3) under periodic force f(t) with fundamental period T0. If
the state transition matrix of such a system has the properties (7) and (8), for every initial
condition, the system converges to the limit cycle of period T0 described by:

û(t, x) = Φ(t, x)

[
û0(x) +

∫ t

0
Φ(−s, x)f(s)ds

]
∀t ∈ [0, T0], (9)



where

û0(x) =

∫ T0

0
R(x)

(
I
2n
−R(x)

)−1
Φ(−s, x)f(s)ds (10)

I
2n

is the 2n× 2n identity matrix and R(x) = Φ(T0, x).

This theorem permits the approximation of the objective function (1) in cases when the contri-
bution made by the steady state of the system is so large that the contribution of the transitory
is negligible. In these cases, the contribution of the steady state to (1) is grasped by the contri-
bution of the limit cycle (9). To formulate the numerical optimization problem it is sufficient to
introduce a time partition t1, t2, ..., tN in the limit cycle. Then, on the one hand, the objective
function is approximated by a Gauss quadrature,

P̂ (x) ≈
N∑
i=1

wiL (û(ti, x)) . (11)

On the other hand, any constraint on the state variable gi(u) ≤ 0 is mapped to N constraints
on each point of the time partition,

gi(û) ≤ 0 =⇒ gi(û(t1, x)) ≤ 0, gi(û(t2, x)) ≤ 0, ..., gi(û(tN , x)) ≤ 0. (12)

We end this section deriving an analytical expression of (9). Such equations are defined in the
interval [0, T0], so we can write the periodic force f(t) as a Fourier series of an odd function

f(t) =
∞∑
k=0

f̂
k

sin(kω0t). (13)

We have to evaluate the integral in the equation (9), which has the following form:

∞∑
k=1

(
k2ω2

0I2n +A2(x)
)−1 [

kω0I2n − Φ(−t, x)
(
kω0 cos(kω0t)I2n + sin(kω0t)A(x)

)]
f̂
k
. (14)

Substituting (14) in (9) and (10), we get

û (t, x) = −
∞∑
k=1

(
k2ω2

0I2n +A2(x)
)−1 (

kω0I2n cos (kω0t) +A(x) sin (kω0t)
)
f̂
k
. (15)

An example of energy harvesting optimization

In this section, we address the problem of choosing the optimal combination of dampers which
maximize the harvested energy from the Euler-Bernoulli beam placed in a bed of dampers (c.f.
Figure 1). The beam in Figure 1 has constant section and density, and is pinned at both ends.
The position of each point of the neutral axis of the beam from the left is given by z. The
beam is under the action of a punctual periodic force p(t) at zf and each damper with damping
coefficient ci is placed at zi. The equation of motion of such a system is:

EI
∂4w

∂z4
+ c0

∂w

∂t
+ ρA

∂2w

∂t2
= p(t)δ(z − zf )−

m∑
i=0

ciw(z, t)δ(z − zi), (16)

where E, I, ρ, A, w and c0 are respectively the Young modulus, the second moment of area
about the neutral axis, the density, the cross-section of area, the vertical displacement of the
neutral axis and the internal damping of the beam’s material. The symbol δ(z) represents a
Dirac’s delta. We further introduce the following variables:

ω1 =
π2

L2

√
EI

ρA
, ζ0 =

c0ω1

2ρA
, ζi =

ciω1

ρA
, τ = ω1t,

ξ =
z

L
, v(τ) =

2p(τ)L3

EI
, η(τ, ξ) =

w(τ, ξ)

L
. (17)



We solve (16) using the change of variables (17) with the Galerkin method approximating the
non-dimensional displacement as

η(τ, ξ) =

n∑
k=1

ϕk(ξ)qk(τ), (18)

where ϕk(ξ) k = 1, . . . , n are a set of orthonormal functions that satisfy the boundary conditions
of the problem. Then, we obtain the discretized equations of motion in the generalized coordinates
q ∈ Rn:

q̈ +
(
d
0

+
m∑
i=1

d
i

)
q̇ + k q = F (τ), (19)

where each component of F and d
i

are respectively F k = ϕi(ξf )v(τ) and (d
i
)kj = 2ζiϕk(ξi)ϕj(ξi),

and d
0

and k are two diagonal matrices with components (d
0
)kk = 2ζ0 and (k)kk = k4.

For m dampers we define our optimization variable x ∈ R2m as x = [ζ1, · · · , ζm, ξ1, · · · , ξm]. The
total power drained by the bed of dampers is given by

L(x) = q̇T

(
m∑
i=1

d
i
(xi)

)
q̇. (20)

Given the definition our design variable x, we have to introduce two bounds on it to preserve
its physical meaning. First, the damping coefficient of each damper must be positive, we set
0 ≤ xi ≤ ζmax i i = 1, · · · ,m. Secondly, we need to constraint the position of the dampers
on the beam, so we set (i − 1)/m ≤ xi+m ≤ i/m, i = 1, · · · ,m. Finally, we introduce the
constraint of limiting the displacement of the beam, i.e., |η(τ, ξ)| ≤ η0 on the limit cycle. The

c1 c2 c3 . . . cn−2 cn−1 cn

z1
z2

z3
zn−2

zn−1

p(t)zf

Figure 1. Beam on a damper bed.

optimization was carried out using an upper bound to the dimensionless displacement η0 = 0.1
and a dimensionless force v(τ) = 0.4 sin(τ). We used the second-order algorithm NLPQLP [1, 7],
converging in 14 iterations and 109 evaluations from the starting point shown in the following
table. Further initial designs were investigated that all resulted in the same optimal design,
needing between 12 and 22 iterations. The results and bounds on the design variable are reported
in Table 1, where we can appreciate the symmetry of the solution. In fact, that solution reflexes
the influence of the first mode of the system and corresponds to the expected behaviour given
the dimensionless force that we have used.

Conclusion and Outlook

This paper has presented a damping optimization method based in the design of the limit cycle of
a linear mechanical system under a periodic force. We gave sufficient conditions for the existence
of such limit cycle and provide a method to formulate the objective function and the constraints
of the optimization problem. As example, a problem of energy harvesting was developed. In the



Table 1. Optimization results of energy-harvesting beam (all measures are dimensionless)

Parameter Initial design x0
Lower bound

xL
Upper bound

xU
Optimum x∗

Damping coefficient ζ1 0.5005 0.001 1.000 0.664

Damping coefficient ζ2 0.5005 0.001 1.000 1.000

Damping coefficient ζ3 0.5005 0.001 1.000 0.670

Position ξ1 0.167 0.001 0.333 0.333

Position ξ2 0.5 0.333 0.666 0.500

Position ξ3 0.832 0.666 0.999 0.667

Energy harvested P – – – 0.126

Maximum displacement η1 – – – 0.071

Maximum displacement η2 – – – 0.100

Maximum displacement η3 – – – 0.071

future, this problem may be improved to handle more general kinds of problems. For example
linear systems under quasi-periodic and stochastic excitation may be further step which may be
addressed from the actual framework. In such cases the existence of limit cycles is not assured,
but we can extent the current analysis to global attractors.
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