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Micro Abstract

Considering a geometrically exact description, only isotropic classical cohesive zone models fulfill
fundamental principles such as material frame indifference and thermodynamical consistency.
The ability to model shear and anisotropy is limited. Within this talk, a novel interface model,
which is consistent with the above mentioned fundamental principles, is presented. Besides the sim-
ulation of anisotropic hyperelasticity, numerical results for anisotropic material degradation are shown.
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Introduction

A possible classification of material interfaces is to distinguish between so-called coherent in-

terfaces, that show a discontinuous traction vector while the displacement field is continuous
and non-coherent interfaces, where a displacement discontinuity is possible. A modeling frame-
work falling into the range of non-coherent material interfaces is the cohesive zone modeling

approach. In classical cohesive zone models, the traction vector is assumed as continuous across
the interface. In an exact geometrical setting, it turns out that fundamental balance laws not
easily are fulfilled for cohesive zone models. For instance, as shown in [4], balance of angular
momentum requires that the traction vector is collinear with the displacement jump. It implies
for elasticity that only isotropic models which may include isotropic damage fulfill balance of
angular momentum. It was also demonstrated in [3] that the classical cohesive zone framework
applied to anisotropic hyperelasticity leads to a non-physical non-vanishing dissipation. On this
background, a novel non-standard extended cohesive zone framework accounting for elastoplas-
tic deformations was recently proposed in [4]. A formulation which considers softening plasticity
as well as an efficient numerical implementation of this framework was provided in [1]. Within
this talk a further generalization in line with [5] is presented that allows to model a material
anisotropy while simultaneously fulfilling all fundamental principles in material modeling . This
generalization can be interpreted as a combination of coherent and non-coherent interfaces. Due
to this combination, the novel framework enables the modeling of shear and anisotropic effects
within the interface under the consideration of different fracture energies for the relevant frac-
ture modes, i.e. mode-I and mode-II/III. Besides the theoretical derivation, numerical results
for anisotropic hyperelasticity and material degradation are shown within this talk.

1 Interface kinematics

In the reference configuration, the interface Γ0 under investigation, see Figure 1, is characterized
by Cartesian coordinates X = X(ξβ), that are describes by curvilinear coordinates ξβ, where
the Greek index takes the values 1 and 2. The covariant tangential base vectors of the reference

configuration, Gβ are given by Gβ =
∂X

∂ξβ
. Furthermore, the unit normal base vector, that is
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Figure 1. Illustration of the interface’s reference configuration Γ0 with the tangential base vectors Gβ and
the unit normal vector G3.

normal to the surface Γ0 is calculated as

G3 =
G1 ×G2

|G1 ×G2|
. (1)

Since this talk deals with non-coherent interfaces, discontinuities in the deformation field can
occur. While in the reference configuration the upper surface Γ0+ and the lower surface Γ0−

of an interface coincide, i.e. Γ0+ = Γ0− = Γ0, the current configuration is characterized by
different coordinates for the upper and the lower side of the opened interface, see Figure 2. The
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Figure 2. Opened material 12-node interface and fictitious intermediate configuration defining the
structural tensors (dashed lines). The shape of the bulk is motivated by the finite element implementation -
tetrahedron elements are employed.

displacement discontinuity JuK is also known as the displacement jump which is defined as

JuK = x− − x+ = u− − u+. (2)

Since the normal vector is not well defined in the deformed configuration for non-coherent
interfaces, the so called mid-surface is introduced (dashed line in Fig. 2). A frequently made
choice is the average of the upper and the lower coordinates, i.e.,

x(m) =
1

2

(

x− + x+
)

. (3)

The normal vector of the current configuration with respect to this midsurface is given by

g3 =
g1 × g2

|g1 × g2|
, (4)



where gβ denote the tangential base vectors with respect to the midsurface’s current config-
uration. While the displacement jump describes the out-of-plane deformation of an interface
the surface deformation gradient F describes the in-plane deformation as a linear map of area
elements between the reference and the current configuration, i.e.,

F = gβ ⊗Gβ. (5)

2 General imperfect interfaces

2.1 Hyperelasticity

For the consideration of anisotropic interface effects, a cohesive zone energy description just
depending on the displacement jump JuK is not sufficient. In order to distinguish between
normal and shear separation according with mixed-mode loading, an extension of the isotropic
framework is required. A possible extension of the classic cohesive zone framework is a definition
of an interface energy depending on the displacement jump JuK and the deformation dependent
normal vector n of the current configuration. In this talk a further extension based on [5] is
presented, where the interface energy is extended with the covariant tangential base vectors of
the deformed configuration gβ, i.e.,

ψ = ψ(JuK,gβ). (6)

This extension of the Helmholtz energy influences the corresponding stress power, i.e.,

P = T · ˙JuK +Aβ · ġβ. (7)

Besides the average traction vector T related to the rate of the displacement jump ˙JuK, addi-
tional stresses Aβ related to the rate of the tangential base vectors gβ have to be considered.
These additional tractions are related to membrane-like forces known from coherent interfaces
and out-of-plane shear forces resulting from the non-coherency of the interface. The dissipation
resulting from Eqs. (6) and (7) yields (for hyperelasticity)

D = ˙JuK ·

[

T −
∂ψe

∂JuK

]

+ ġβ ·

[

Aβ −
∂ψe

∂gβ

]

= 0, (8)

where the classic Coleman and Noll procedure leads to

T =
∂ψe

∂JuK
; Aβ =

∂ψe

∂gβ

. (9)

Due to the additional stresses Aβ the traction vector no longer needs to be continuous, like it
is the case in classical isotropic cohesive zone models, i.e. T− 6= −T+.

2.2 Extension with material degradation

In accordance with [3], [4] and [5] material degradation within the interface is realized through
a scalar valued cross coupled damage model. To be more explicit, Helmholtz energy (6) is
decomposed into a normal and a shear part, i.e.

ψe = ψn(JuK,gβ) + ψs(JuK,gβ). (10)

Material degradation is captured by introducing a set of scalar-valued damage variables d
(j)
i .

Each deformation mode is characterized by means of its own damage variable whereby an
anisotropic failure behavior can be modeled. In order to couple damage in normal direction to
that in shear direction, a mixed-mode energy of the type

ψ = (1− d(n)n )(1− d(s)n )ψn(JuK,gβ) + (1− d(n)s )(1− d(s)s )ψs(JuK,gβ) (11)

is proposed.



3 Numerical studies of anisotropic damage

The talk is completed by numerical analyses of the influence of interfaces on the macroscopic
response. Therefore, a cubic RVE with a spherical inclusion is investigated, cf. Figure 3. A
macroscopic deformation gradient F is applied leading to debonding between the matrix and the
inclusion. In order to compute the resulting macroscopic stresses, an extended homogenization
scheme, introduced in [2], is applied. In addition to the purely hyperelastic interface, several

F

Figure 3. Numerical analysis of an RVE consisting of a spherical inclusion embedded in a matrix. The bulk
materials are separated by a general imperfect interface. A macroscopic deformation gradient F is applied
to the RVE

computations based on different damage models are also analyzed.

Conclusions

By elaborating an extended setting, it was shown that anisotropic cohesive zone models comply-
ing with all fundamentals in material modeling can be derived. The influence of the resulting
advanced interface models on the macroscopic response was investigated through computational
homogenization. It turns out that although all models involved are local in nature, their com-
bination naturally captures a size effect due to the different scalling behavior (volume energies
vs. interface energies).
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