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Micro Abstract
The phase-field method has emerged as an extremely powerful technique to simulate crack propagation
with significant success. Phase-field simulation of crack propagation in elasto-plastic multilayered
materials is discussed in this work. Three fundamental cases are studied i.e. (i) crack propagation in
a brittle material, (ii) in a ductile material and (iii) in a brittle-ductile composite. The numerical
results demonstrate the mechanical performance of such a multilayered composite design.
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Introduction

The phase-field method has emerged as an extremely powerful technique to simulate crack
initiation and propagation with significant success [3]. Phase-field-type diffusive crack approach
is capable of predicting the crack initiation and propagation without any additional criterion.
Here, its main advantages are the ability to predict crack initiation and to handle curved crack
paths, crack kinking, branching angles and crack-front segmentation in three dimensions. In
this work, phase-field modelling of crack propagation in elasto-plastic multilayered materials
is investigated. Therefore, we introduce the phase-field model for brittle fracture and phase-
field model for ductile fracture which has been extended to the exhibiting J2-plasticity material
behavior. Three fundamental cases are studied i.e. (i) crack propagation in a brittle material,
(ii) in a ductile material and (iii) in a brittle-ductile multilayered material. The numerical
results demonstrate the mechanical performance of such a multilayered composite design. The
multi-field coupled finite element problems are performed with staggered solutions.

1 Phase-field model of brittle fracture

In phase-model of brittle fracture, based on the regularized form of the variational model by
Bourdin [1] the combined free energy density ψ is given as follows:

ψ(ε, s) = (s2 + η)
1
2
ε : (C : ε)
︸ ︷︷ ︸

ψe

+ Gcγ(s,∇s)
︸ ︷︷ ︸

ψfrac

(1)

in which ψe is the elastic strain energy density of material with the total strain ε and the
isotropic fourth-order elastic stiffness tensor C. The phase-field variable s describes the intact
state by s = 1 and the fully broken state of the material point is defined by s = 0. The small
positive dimensionless parameter 0 < η � 1 is used to ensure a numerically well-conditioned
system for a fully-broken state (s = 0). The critical energy release Gc is defined as the energy
required to create a unit area of new crack and γ(s,∇s) = 1

4κ(1 − s)2 + κ|∇s|2 denotes the
crack surface density function per unit volume of the solids. If κ tends towards zero, the
phase-field approximation of the fracture energy density ψfrac is exact. In order to ensure crack



propagation under tensile or shear loading, a modified regularized formulation of the phase-field
energy density was proposed in [3], using the definitions:

ψ(ε, s) = (s2 + η)ψ+
e + ψ−

e (ε) + Gc(
1
4κ

(1 − s)2 + κ|∇s|2) (2)

The elastic energy density ψe splits into the positive part ψ+
e and the negative part ψ−

e , namely

ψe =
1
2
K(〈tr(ε)〉+)2 + μ(εD : εD)
︸ ︷︷ ︸

ψ+

+
1
2
K(〈tr(ε)〉−)2

︸ ︷︷ ︸
ψ−

(3)

where K is the bulk modulus, μ the shear modulus and εD the deviatoric part of the elastic
strain ε. Here, 〈a〉± = (a ± |a|)/2 define the so-called Macaulay bracket. A time dependent
Ginzburg-Landau evolution equation of the crack phase-field s which is variational derived from
the phase-field energy density reads as:

ṡ

M
= −2sψ+

e + Gc(
1 − s

2κ
+ 2κΔs) (4)

with the mobility factor M which should be chosen sufficiently large.

2 Phase-field model of ductile fracture

The energy density ψ is expressed as the sum of the elastic strain energy density, plastic strain
energy density and the fracture energy density in the phase-field model for ductile fracture. The
free energy density function ψ can be written as [2]:

ψ(εe, s) = (s2 + η)[
1
2
εe : (C : εe)
︸ ︷︷ ︸

ψe

+(σY +
1
2
Hα)α

︸ ︷︷ ︸
ψp

−ψc] + ψc +
4κψc

ζ
γ(s,∇s)

︸ ︷︷ ︸
ψfrac

(5)

where ψe is the elastic energy density with the elastic strain tensor εe = ε−εp. ψp is the plastic
strain energy density assuming linear isotropic hardening with respect to the plastic strain ten-
sor εp, the accumulated plastic strain α, the yield stress σY and the linear hardening coefficient
H. The plastic strain tensor εp and the accumulated plastic strain α are defined as internal
state variables within the considered J2 plasticity model. ψc is a specific critical fracture energy
per unit volume. ζ presents the post-critical range after crack initialization.
In order to distinguish between crack propagation in tension loadings, shear loadings and com-
pression loadings, a modified regularized formulation of Eq. (5) was proposed in Miehe et al. [2],

ψ(εe, εp, α, s) = (s2 + η)[ψ+
e (εe) + ψp(εp, α) − ψc] + ψ−

e (εe) + ψc + ψfrac(s,∇s) (6)

which contains the decomposition of the elastic energy density ψe = ψ+
e + ψ−

e and, eventually

ψ+
e =

1
2
K(〈tr(ε)〉+)2 + μ(εD

e : εD
e ) and ψ−

e =
1
2
K(〈tr(ε)〉−)2 (7)

Using Eq. (6), the Ginzburg-Landau evolution equation of the phase-field s becomes:

1
M

ṡ = −2s〈ψ+
e + ψp − ψc〉

+ − 2
ψc

ζ

[

s − 1 − 4κ2Δs

]

(8)



3 Numerical Example

The numerical implementation of the phase-field model for fracture is applied to the crack
propagation in the brittle-ductile multilayered composite. A square plate of length 10 mm,
containing a horizontal notch of length 0.5 mm, is subjected to uniaxial tension loading by
prescribing a vertical displacement on the top and bottom edge boundaries (Fig. 1). The mate-
rial parameters are chosen as E=205000 MPa, v=0.3, σy=245 MPa, H=760 MPa, κ=0.1 mm,
η=0.0001, Gc=7 MPa.mm, ζ=1 and M=106 1/MPa.s. In this simulation, the influence of the
ductile materials on the response of the multilayered composite is investigated. Therefore, the
influence of the critical fracture work density ψc is analysed since it is the controller of the
ductile failure process. To this aim, four different values for the critical fracture work density
ψc are used. The obtained force displacement responses are depicted in Fig. 2. It is obvious that
the load bearing capacity has become greater by increasing the critical fracture work density ψc.
On the other hand, the level of the maximal force does not change as the crack firstly initiates
and propagates in the brittle material. It can be observed that the fracture strength can be
improved by the increasing ψc.

The Fig. 3 shows that the crack propagates straightly horizontal in the brittle material, then
the crack follows the path with the angle of 45 degrees in the ductile material. It can also
be observed that the crack path is nearly unaffected by the value of the critical fracture work
density ψc.

Figure 1. The notched elasto-plastic multilayered composite: the geometry and associated dimensions

Conclusions

The aim of this paper was to analyse the fracture-mechanics performance of the brittle-ductile
multilayered composite using the phase-field method. Therefore, the utilize phase-field model
of brittle fracture and ductile fracture are described in detail. The achieved results from this
simulation of both the crack paths and force displacement responses from the phase-field models
proved that the ductile material has good ability to improve the mechanical performance of the
multilayered composite since the fracture strength can be improved by increasing the critical
fracture work density ψc. In other words, the results suggest that the ductile layer can absorb
more fracture energy. Finally, it is noteworthy that the fracture-mechanics performances of the
proposed multilayered composite should be compared with experimental data which need to
be investigated further. Moreover, the damage and failure analysis of heterogeneous materials



Figure 2. Force-displace curves for the different value of the critical fracture work density ψc

Figure 3. The final damage phase field distribution in the notched elasto-plastic multilayered composite
using (a)ψc = 4 MPa , (b)ψc = 8 MPa, (c)ψc = 12 MPa and (d)ψc = 16 MPa

using phase-field modelling should be investigated further.
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