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Micro Abstract

The aim of our novel inverse form finding approach is to determine the optimized workpiece geometry
to its given target geometry after a forming process. During the optimization procedure, deviations
between the computed and the target spatial configuration have to be minimized, whereby material
nodal positions serve as design variables. The shape optimization is applied to a notch stamping
process. As a special feature, mesh adaptivity is applied within the iterative forming simulation.
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Introduction

Typically, metal forming processes are classified as i) sheet forming with plane stress and ii) bulk
metal forming with three dimensional stress conditions. Sheet-Bulk Metal Forming (SBMF),
a novel class of forming processes, combines sheet metal forming operations with three dimen-
sional plastic flow. Hence, SBMF intends to form local shape elements normal to the sheet
plane [7]. As usual in various fields of product development, optimization is also applied to
SBMF processes in order to reduce experimental costs. In this contribution, numerical shape
optimization aiming at inverse form finding is considered. Here, in contrast to the forming
simulation, shape optimization is an inverse problem [3].

The inverse form finding strategy [6] seeks to determine the optimal workpiece geometry based
on the forming simulation and the prescribed spatial target geometry. Nodal positions serve
as design variables and the deviations between the nodal positions of the computed spatial
configuration and the prescribed spatial target configuration enter into the objective function δ

of the optimization, which has to be minimized during the optimization. Since it dos not require
intervention to the FE code, the algorithm is non-invasive. Hence, various FE simulation tools
considering different material behavior may be employed, whereby data transfer is ensured by
subroutines.

Performing forming simulation often requires a trade-off between accuracy and computational
cost. In particular high accuracy has to be achieved despite of friction, contact and large
deformations which often lead to severe mesh distortions. Since a equal fine mesh throughout
the entire model cause high computational cost adaptive strategies are used to refine the mesh
locally according to the simulation progress and based on error estimators. Thus a sufficient
accurate and smooth mesh is ensured. In the present contribution, an h-adaptivity offered by
MSC Marc is used to refine the mesh locally in regions of severe distortions. H-adaptivity allows
for more complex geometries and high local plastic strains.

In the following, a truncated version of the inverse form finding algorithm is introduced in
Sec. 1. In Sec. 2, an example demonstrating the application of the algorithm for a notch
stamping process is discussed. Finally, essential findings are summarized in Sec. 3



1 Inverse Optimization Approach

The shape optimization procedure is based on nonlinear continuum mechanics. The physical
body is placed into the Euclidean space E

3 and its material configuration is denoted by B0. In
contrast, its spatial configuration for time t > 0 is labeled as Bt. Position vectors X in B0 are
mapped to position vectors x in Bt by means of the deformation map ϕ as

x = ϕ(X, t) : B0 → Bt . (1)

A linear map from the material tangent space TB0 to the spatial tangent space TBt is governed
by the gradient F of the deformation map with respect to material coordinates:

F =
∂ϕ(X)

∂X
: TB0 → TBt (2)

For our node-based algorithm all quantitites has to be discretized in the same way as for FE
method. For a detailed description of FEM we may refer among others to [1]. Positions of
design nodes are denoted by xD, D = 1, . . . , ndsgn and subsumed in column vectors xD =

[x1⊤, · · · ,xdsgn⊤]
⊤

.
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Figure 1. The iterative strategy for inverse form finding, separated into forming simulation (direct problem)
and shape optimization (inverse problem) [5].

The optimization procedure is depicted in Fig 1. To realize a non-invasive approach the opti-
mization is separated from the forming simulation. The algorithm for the update procedure
is introduced in [6]. There, the objective function δ summarizes the local squared error of the
nodal differences between the current spatial and prescribed spatial target configuration:

δ(XD,xD
tg) =

ndsgn
∑

D=1

δD
(

xD

tg,ϕ(X
D)

)

(3)

δD =
1

2
dDT

· dD with dD = xD

tg −ϕ(XD) (4)

The update step is motivated by a minimization of the objective function to determine the
optimal configuration XD

opt. A linear approximation by Taylor series terminated after the first
term derives an iterative Newton step as

XD
←XD

− α
∂2δD

(

XD,xh
tg

)

∂XD∂XD

−1

·
∂δD

(

XD,xh
tg

)

∂XD
. (5)

Finally, further approximations lead to an update step for each design node as

XD

k+1 = XD

k
− α F̃

D−1

· dD . (6)

The linesearch parameter α introduced in Eq. (5) ensures a suited update without severe mesh
distortions and is controlled by Armijo-Backtracking [6]. A Least-Squares smoothing technique
recommended by Hinton and Campbell [4] is applied to map quantities from the Gauss points
of adjacent elements to the discretization node. The smoothed inverse deformation gradient

F̃
D−1

is used to map the nodal difference vector of the considered node from the spatial to the
material configuration in order to obtain an updated material configuration.



2 Example

The example is motivated by a notch stamping process employed in an investigation of the
plastic flow in an incremental process of SBMF for gears [8] and has been recently discussed
in [2]. The material configuration is depicted in Fig. 2(a). The bottom is fixed in e2-direction
and the boundary condition on the right side represents a symmetry condition in e1-direction.
The quadratic 2D-solid body is discretized by 64 quadrilateral elements (plane stress). The
material model considers nonlinear isotropic hardening and its material parameters correspond
to the dual phase steel DP600 as investigated by [10]. The contact body of the notch is reduced
onto a horizontal and a 45◦ line. The notch penetrates at a constant velocity into the specimen
up to 25mm depth. Between the solid body and the notch a friction coefficient of 0.07 is used
as in [9].
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Figure 2. The original discretized material configurations (a) and the corresponding computed spatial
configuration (b) in comparison to the target spatial configuration (c)

Fig. 2(b) shows the computed spatial configuration after the first simulation run. The target
spatial configuration, depicted in Fig. 2(c), is approximated by the same number of nodes and
elements but an exact imprint of the notch into the quadratic box is applied. The distinction
between design-, symmetry- and boundary nodes is proposed by [5], for the inverse form finding
approach. It enables to restrict the inverse update procedure to nodes representing the shape
of the model. The optimization aims to reduce the deviations between the design nodes of the
computed spatial (b) and target spatial configuration (c) by updating iteratively the material
configuration (a).
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Figure 3. Updated material configuration (a), computed spatial configuration by use of h-adaptivity (b)
and without refinement (c)

Fig. 3(a) depicts the optimized material configuration after four iterations. The shape is adapted
to fit the spatial target configuration. The finally obtained spatial configuration is given in
Fig. 3(b), whereby h-adaption is applied and consequently the severe distortions of the elements
close to the intended notch are reduced, cf. the detailed view in Fig. 3(b) and Fig. 2(b), 3(c).
The optimization without adaption leads to similar results of the final workpiece geometry,
however, the corresponding spatial configuration in Fig. 3(c) shows severe element distortions.
In this case plastic strains are not meaningful.



3 Conclusions

The inverse form finding algorithm determines the optimal workpiece geometry to a given form-
ing simulation with respect to a desired spatial target configuration. With the help of the
previous enhancements together with mesh adaptive strategies, the optimization procedure is
applicable to material models including nonlinear material behavior and contact with sharp
edges, whereby severe mesh distortions are avoided. The obtained spatial configuration fit into
the target spatial configuration and the computational results are accurate.
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