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Micro Abstract
Physico-mathematical models of shells in the framework of couple stress and strain gradient elasticity
theories with variational formulations are developed. The models derived are embedded into a
commercial finite element software as user subroutines following the isogeometric paradigm. Practical
applications such as modelling of microarchitectured materials and materials with microstruc-
ture, or problems of fracture mechanics, illustrate the advantages of the non-classical continuum theories.
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Introduction

Commercial software for computational structural engineering and applied mechanics are based
on classical theories, such as theory of elasticity, which rely on classical continuum mechanics and
does not take into account the material microstructure. However, materials with microstructure
are the future direction of material design (cf. architectured materials, micro- and nanoelectrome-
chanical systems MEMS and NEMS, topology optimization, 3D-printing). Generalized continua
theories, incorporating length scale parameters related to additional energy terms, have shown
to be appropriate for (1) modelling materials with microstructures of different scales [7], or (2)
for homogenisation models of structures with substructures [8]; as well as (3) for smoothening
unphysical macro-scale singularities in crack tips or sharp corners [2]. With this background,
the importance of developing efficient and reliable numerical methods for these models becomes
unquestionable.

In the current contribution, we consider one of the most complex representatives from a family of
generalized continua theories, namely, gradient elasticity (introduced in [6]). Models and methods
for some others, for example, modified couple-stress theory, can be obtained by simplifications
and minor changes of the presented derivations.

Numerical methods for gradient-elastic structural models such as bars, beams or plates are
well-developed and extensively covered in the literature. However, there are no contributions on
numerical methods for gradient-elastic shells.

1 Energy expressions for the gradient-elastic Kirchhoff-Love shell model

The core concept of the strain gradient elasticity theory is the introduction of a new term into
the internal energy of elastically deformable continuum:
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where E and S stand for the energy conjugated Green-Lagrange strain and second Piola-
Kirchhoff stress tensors respectively, µ and τ are the strain and stress tensors of third rank, and
body volume is denoted by V . The third-rank strain tensor µ is defined as the gradient of the
Green-Lagrange strain tensor:

µ = ∇E = Eij;kG
k ⊗Gi ⊗Gj , (1.2)

where indices denoted by Latin letters take values from set {1,2,3}, Gi are the local contravariant
basis vectors of the reference configuration, Eij;k denotes the covariant derivative which in a
general case of curvilinear coordinates is expressed as follows [3]:

Eij;k = Eij,k − Elj Γ l
ik − Eil Γ l

jk = Eij,k + Eij|k, (1.3)

with Γ l
ik standing for the second kind Christoffel symbols, ”,k” denotes the k-th partial derivative

and ”|k” is just the covariant derivative without the partial derivative. Note that here and below
the Einstein summation by repeated indices is applied.

Taking into account the plane stress assumption – one of the basic shell theory assumptions –
we can neglect out-of-plane components of stress tensor S = SαβGα ⊗Gβ (Greek letters are
used for indices taking values 1 and 2). By ”plane” we mean here the vectors lying in the plane
tangential to the middle surface of a shell.

The constitutive laws – generalized Hooke’s law and its analogue for the third-rank tensors have
the following form:

Sαβ = CαβγρEγρ; τ iαβ = Aiαβjγρµjγρ, (1.4)

where Cαβγρ and Aiαβjγρ denote the components of the tensors of elastic moduli; upper and
lower indexes relate to covariant and contravariant local bases accordingly. For the isotropic
case, the following expression can be established:

Cαβγρ = λδαβδγρ + µ(δαγδβρ + δαρδβγ), (1.5)

with λ and µ being the Lame parameters and δαβ denoting the Kronecker delta symbol.

For the isotropic strain gradient elasticity theory, the introduction of five new material parameters
for strain-stress relations is required. In a simplification by Aifantis and his co-authors (see [1],
for example), the number of constants for the static case is reduced to one, denoted by g with
dimension of length. With this, the components of the six-order tensor of material constants for
the isotropic case can be written :

Aiαβjγρ = g2δij
[
λδαβδγρ + µ(δαγδβρ + δαρδβγ)

]
= g2δijCαβγρ. (1.6)

Let us recall some expressions of the classical shell theory derived with the aid of differential
geometry (see [5] for explanations). Thus, strain tensor can be decomposed into the membrane
and bending parts εαβ and καβ with the use of a straight cross section assumption:

Eαβ = εαβ + θ3καβ, (1.7)

where θ3 is the coordinate along the thickness direction of a shell.

Similarly, stress resultants can be divided by two parts, namely, normal forces nαβ and bending
moments mαβ (with an assumption about a linear stress distribution along thickness t):

nαβ =
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12
Cαβγρκγρ. (1.8)



In view of the above, the variation of the internal strain energy can be written in the following
form:
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(1.9)

where ∇S stands for the surface gradient: ∇Sε = εαβ;γG
γ ⊗Gα ⊗Gβ, and bold letters stand

for tensor notations of the strains and stress resultants.

By substitution of expression (1.9) into the variational principle

δ(Wext −Wint) = 0 (1.10)

and adoption of the appropriate form for the variation of work done by external forces Wext,
one can obtain the governing differential equations of the gradient-elastic shell model.

2 Numerical solution

All the expressions presented in the previous section are valid in the framework of non-linear theory
of elasticity. For simplicity, in the following section we restrict ourself to linear formulations.

2.1 Finite-element formulation, stiffness matrix and force vector

The discretization of the displacement vector is the starting point for any finite-element formula-
tion:

u =
n∑
i

N iûi, (2.11)

where n is the number of nodes, N i are basis functions, vector ûi contains 3 components of
the displacement at each node. Therefore there are 3n degrees of freedom ur, r = 1, ..., 3n .
Equilibrium equation (1.10) must be fulfilled for any arbitrary variation of the displacement
variable (degree of freedom) δur:

δ(Wext −Wint) =
∂(Wext −Wint)

∂ur
δur = 0, (2.12)

which means that

∂(Wext −Wint)

∂ur
= (Wext −Wint),r = 0 (2.13)

and leads to the following standard finite element matrix equation:

Kû = F , (2.14)

where the components of stiffness matrix K are written as
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(2.15)



and the the components of force vector F are written as

Fr = (Wext),r. (2.16)

Equation (2.15) contains the partial derivatives of the stress and strain tensor components.
In order to calculate them, it is necessary to know how the stresses and strains depend on
displacements. Interested readers are advised to see section 3 of [5].

The derivations above are not specific to any certain type of basis functions N i. However, we
prioritize the isogeometric paradigm (IGA) [4] with NURBS basis functions. There are two
main reasons for this choice. First, the main idea of IGA is the use of the exact CAD geometry
directly for analysis, and for obvious reasons this is exceptionally beneficial for curved shells
with complex geometries. Second, NURBS basis functions of order p provide Cp−1 continuity
across the element boundaries and this is especially crucial in the context of gradient elasticity
for Kirchhove-Love shells requiring third-order derivatives of basis functions and, accordingly, at
least C2 continuity.

2.2 Benchmark problem: bending of a cantilever strip

For the verification of the method and its implementation accomplished as Abaqus User Element
subroutines, let us consider a bending problem of a cantilever slab. The problem setting is
depicted tn Figure 1.

Figure 1. Problem setting.

For small strip width, the Bernoulli-Euler gradient-elastic beam model can be used as reference,
giving the normalized bending rigidity expression for g = t in the following form [7]:

D∇

Dclass
≈ 1 + 12

g2

t2
= 13. (2.17)

The result obtained in Abaqus for the implemented gradient-elastic user shell element show
a good correlation with the analytical estimation of (2.17). Thus, the ratio of the calculated
maximal deflections of the shell slab for the gradient and classical theories is (almost equal to
(2.17))

D∇

Dclass
=

w∇(L)

wclass(L)
=

12.8

0.984
= 12.998. (2.18)

Conclusions

An isogeometric Galerkin method for gradient-elastic linear Kirchhoff-Love shells is implemented
as Abaqus User Element subroutines. First tests show that the implementation performs
correctly but further verifications such as comparison with full-scale 3D modelling need to be
accomplished as well. The realized method can be easily extended to solving problems with
geometrical non-linearities and can be used for some other generalized continua models without
major changes.



The theoretical background and examples in literature allows conclude that the developed
method can be used in many industrial applications for more reliable modelling the mechanical
behaviour of micro- and nano- objects as well as macro-objects with complex micro-architecture.
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