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Micro Abstract
The first and second strain gradient elasticity theories, resulting in higher-order governing equations,
are studied in the framework of continualization, or homogenization, of lattice structures such
as trusses in plane and space, with auxetic metamaterials as a special application. In particu-
lar, the role of length scale parameters and classical dimensions, such as the beam thickness, is
addressed by parameter studies. Finite element and isogeometric methods are utilized for discretizations.

1Department of Civil Engineering, Aalto University, Espoo, Finland

*Corresponding author: jarkko.niiranen@aalto.fi

Introduction

Generalized continuum theories have been developed in order to widen the range of applicability
or to increase the accuracy of the theories of the classical Cauchy continua. Surprisingly, the
history of generalized continuum theories dates back to the birth of the classical theories. In short,
generalized (multi-scale) continuum theories aim at bringing in some length scale information
lacking from the classical (single-scale) continuum theories. New information is brought into the
continuum models by enriching the classical strain energy expressions essentially by either new
independent variables of local nature (e.g. micro-rotations in micro-polar theories) or gradients
of the classical variables of global nature (e.g. strain gradients in strain gradient theories). In
both types of approaches, length scale parameters – related to the new variables or the gradients,
respectively – are introduced, basically implying new constitutive relationships.

This contribution focuses on applying the first and second strain gradient elasticity theories for
modeling the size-dependent mechanical response of lattices structures: bending, buckling and
vibrations of triangular lattices are analyzed by beam and plane stress/strain models of strain
gradient elasticity.

1 First Strain Gradient Elasticity Theory for Modeling Planar Trusses

This section first recalls the strain energy of the first strain gradient elasticity theory and its
application to engineering beams via the classical dimension reduction assumptions of Euler and
Bernoulli. Then the strain gradient beam model is applied for modeling planar trusses having a
uniform triangular microarchitecture.

1.1 Strain Energy in the First Strain Gradient Elasticity Theory

Let us consider Mindlin’s strain gradient elasticity theory of form II [5] with the strain energy
density written in the form

WII =
1

2
λεiiεjj + µεijεij + g1γiikγkjj + g2γijjγikk

+ g3γiikγjjk + g4γijkγijk + g5γijkγkji, (1)



where the (third-order) micro-deformation tensor is defined as the strain gradient

γ = ∇ε, (2)

with operator ∇ denoting the third-order tensor-valued gradient and with the classical linear
strain tensor written as

ε = ε(u) =
1

2

(
∇u+ (∇u)T

)
, (3)

where the nabla operator now denotes the second-order tensor-valued gradient. The (third-
order) double stress tensor is defined by a set of five additional material parameters g1, ..., g5 as
τijk = ∂WII/∂γijk = τjik with indices i, j, k getting values x, y, z within a Cartesian coordinate
system. The constitutive relation between the strain tensor and the classical Cauchy stress
tensor σ follows the generalized Hooke’s law as in the classical elasticity theory:

σ = 2µε+ λtr εI, (4)

with the Lamé material parameters µ and λ. The displacement field of body B is denoted by
u : B → R3.

Finally, the virtual internal work is written in the form [5]

δWint =

∫
B
σ : ε(δu) dB +

∫
B
τ

...γ(δu) dB, (5)

where : and
... denote the scalar products for second- and third-order tensors, respectively.

A one-parameter simplified strain gradient elasticity theory proposed originally by Altan and
Aifantis [1] reduces the strain energy density (1) to the form

WII =
1

2
λεiiεjj + µεijεij + g2

(1

2
λεii,kεjj,k + µεij,kεij,k

)
, (6)

where the non-classical material parameter g describes the length scale of the micro-structure of
the material. Double stresses

τijk =
∂WII

∂εij,k
= g2(λεll,kδij + 2µεij,k) = τjik (7)

are related to the partial derivatives of the strain components by the Lamé parameters and the
gradient parameter g. For constant Lamé parameters, the double stress tensor takes the form
τ = g2∇σ, and the virtual work expression can be written as

δW g
int =

∫
B
σ : ε(δu) dB +

∫
B
g2∇σ

...∇ε(δu) dB. (8)

1.2 Euler–Bernoulli Beams within the First Strain Gradient Elasticity Theory

Let us consider a three-dimensional beam structure occupying the domain

B = A× Ω, (9)

where Ω = (0, L) denotes the central axis of the structure with L standing for the length of the
structure. The x-axis of a Cartesian coordinate system is assumed to follow the central axis of
the beam. A ⊂ R2 denotes the cross section of the beam, which requires that diam(A)� L.

Let us assume that the material properties and the cross section of the beam as well as surface
and body loads, and both static and kinematic boundary conditions on the end point cross
sections, are of such a form that one can focus on uni-axial bending in the xz-plane governed



by displacement field u = (ux, uz). The dimension reduction hypotheses of Euler and Bernoulli
then imply the displacement components of the form

ux = −z ∂w(x)

∂x
, uz = w(x), (10)

leaving the transverse deflection w : Ω→ R as the only independent unknown of the problem.

Inserting the kinematical descriptions in the virtual work expression (8) and defining the force
resultants, the classical Cauchy type bending moment and a generalized moment, respectively, as

M(x) =

∫
A
σx(x, y, z)z dA, R(x) =

∫
A

∂σx(x, y, z)

∂z
dA, (11)

results in an energy expression over the central axis of the beam and finally gives, with the
principle of virtual work, the governing equation of the problem in terms of bending moments in
the form [7],

(M + g2R− (g2M ′)′)′′ = f in Ω. (12)

In terms of deflection, the governing equation reads as(
(EI + g2EA)w′′ − (g2EIw′′′)′

)′′
= f in Ω. (13)

With constant material parameters, this equation still reduces to the form

(EI + g2EA)w(4) − g2EIw(6) = f. (14)

The boundary conditions of the problem are able to describe the three standard types: clamped,
simply supported and free. The clamped and simply supported boundaries can be distinguished,
however, into two different types according to the curvature κ = −w′′(x) of the beam axis. In
this way, five different boundary condition types can be defined [7]: doubly clamped and singly
clamped boundaries, respectively,

w = w and w′ = β and − w′′ = κ on ΓCd
, (15)

w = w and w′ = β and g2M ′ = G
g

on ΓCs , (16)

doubly simply supported and singly simply supported boundaries, respectively,

w = w and (M + g2R− (g2M ′)′) = M
g

and − w′′ = κ on ΓSd , (17)

w = w and (M + g2R− (g2M ′)′) = M
g

and g2M ′ = G
g

on ΓSs , (18)

and free boundaries,

(M + g2R− (g2M ′)′)′ = Q
g

and

(M + g2R− (g2M ′)′) = M
g

and

g2M ′ = G
g

on ΓF, (19)

Finally, we note that setting g = 0 results in the classical boundary conditions of Euler–Bernoulli
beams. For gradient-elastic Timoshenko beams, we refer to [2,3], whereas higher-order beam
models including material unisotropy have been studied in [8], for instance.



1.3 Numerical Tests for Trusses

Let us consider a uniform triangular lattice structure in plane formed by equilateral triangles
made of bulk material with Young’s modulus E as depicted in Figure 1 (left). A series of
trusses of length L = Nl and thickness T = Nt, with N = 1, 2, 3, . . . , are extracted from the
triangular lattice such that t denotes the thickness of one layer of triangles and l denotes a
chosen fundamental length such that assumption t� l is valid (implying that the fundamental
truss with N = 1 can be considered as a thin beam and, accordingly, the subsequent trusses of
the series as well). It should be noticed that the (thick) internal and (thin) surface bars of the
lattice are of constant thickness, say, d and d/2, respectively (see Figure 1).

The lattice beams of the series are homogenized as straight beams following the strain gradient
theory and it is shown by numerical results that the generalized beam model is able to take
into account the size dependency caused by the lattice microstructure of the beams in bending
and buckling by two material parameters: the effective Young’s modulus and the length scale
parameter g (one more parameter is needed for free vibrations) [3]. In auxetic metamaterials,
in particular, the size dependency plays a key role due to the bending dominance of internal
deformations of the material. Isogeometric Galerkin methods have been used for discretizing
the generalized beam model, whereas for fine scale validation models standard finite element
methods have been utilized.

Figure 1. Left: A piece of a uniform triangular lattice structure formed by equilateral triangles made of
straight bars of bulk material depicted by (grey) solid lines. Right: A piece of a triangular lattice structure
with the basic bars depicted by (blue or grey thick) solid lines and (red and green thin) springs indicating two
types of distant bars.

2 Second Strain Gradient Elasticity Theory for Modeling Spring Lattices

Models of the second strain gradient elasticity theory can be formulated by extending the basic
principles of the first strain gradient elasticity theory; see [4,6] providing the general descriptions
and a simplied model with a thorough analysis.

A triangular lattice structure of multiple bars or springs, depicted in Figure 1 (right), can be
shown to behaves as a second strain gradient continuum [4]. In particular, it can be shown that
initial stresses prescribed on boundaries can be associated to one of the higher-order parameters,
the so-called modulus of cohesion, giving rise to surface tension.



Conclusions

This contribution has focused on applying the first and second strain gradient elasticity theories
for modeling the size-dependent mechanical response of lattices structures. First, the strain
energy of the first strain gradient elasticity theory has been recalled and then applied to
Euler–Bernoulli beams. Then the strain gradient beam model has been applied for modeling
planar trusses having a uniform triangular microarchitecture. In particular, the mechanical
response of the lattice beams in bending, buckling and free vibrations have been reported to be
microstructure-dependent, i.e., size-dependent. It has been finally reported as well that a more
complex triangular lattice structure behaves as a second strain gradient continuum possessing
size-dependent surface tension effects, in particular.
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