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Micro Abstract

This work outlines a variational framework for the phase field modeling of fracture in porous
plastic solids. The phase field regularizes sharp crack surfaces by a specific gradient damage
formulation. A model for porous plasticity with a growth law for the evolution of the void fraction
is developed and linked to a failure criterion in terms of the elastic-plastic work density. It is shown
that this approach is able to model basic phenomena of ductile failure such as cup-cone failure surfaces.
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Constitute framework for porous plastic solids at fracture

The presented model is formulated in context of finite deformations. It incorporates a gradient
plasticity theory and the crack propagation is modeled with the phase field approach. Hence
the global fields can be identified as the deformation map ϕ, the phase field variable d and the
global hardening variable α

ϕ :

{
B × T → R3

(X , t) 7→ x = ϕ(X, t)
d :

{
B × T → [0, 1]
(X , t) 7→ d(X , t)

α :

{
B × T → R
(X, t) 7→ α(X , t)

. (1)

Here the phase field variable denotes with d = 0 the unbroken solid and d = 1 the fractured
state. The decomposition of the deformation into an elastic and plastic part is based on the
multiplicative split of the deformation gradient F := ∇ϕ = F eF p, as introduced in [2], and the
introduction of a Lagrangian plastic metric Gp ∈ Sym+(3) and an elastic deformation measure
in form of the Eulerian finger tensor be = F eF eT . This gives the definitions

be := FGp−1F T with Gp(X , to) = 1 and he = 1

2
ln[be], (2)

where he is the Eulerian elastic Hencky tensor. The evolution of the plastic metric is given by
the Eulerian plastic rate of deformation tensor introduced in [5],

dp := − 1

2
(£vb

e)be−1 = FDpF−1 with Dp = − 1

2
Ġp−1Gp. (3)

To account for the microstructural changes in terms of the porosity in the material, the void

volume fraction f is introduced. It and its evolution are expressed in terms of the determinant
of the deformation gradient J := det[F ], see also [1]. The initial void volume fraction is denoted
as f0.

ḟ = (1− f)
J̇

J
⇒ f = f̂(J) = max

[
f0, 1−

1− f0

J

]
. (4)

Pseudo Energetic Response

The pseudo energetic response is characterized by the constitutive state C given by

C := {∇ϕ,Gp−1, α,∇α, d,∇d}. (5)



Based on that, one can formulate the elastic-plastic fracture work density

W (C) = g(d)[we(he) + wp(α,∇α)] + [1− g(d)]wc +wf (d,∇d), (6)

in terms of an elastic we(he), plastic wp(α,∇α) and a phase field part wf (d,∇d). Note that
both the elastic as well as the plastic contribution within the work density function are degraded
by the degradation function g(d) = (1 − d)2. The material parameter wc denotes the critical

work density of the solid controls the onset of damage. The elastic work density is assumed to
have the simple quadratic form

we(he) =
κ

2
tr 2[he] + µ tr[(dev[he])2]. (7)

The plastic work density is expressed in terms of a saturation-type hardening function ŷM (α),
the plastic length scale lp > 0, the initial yield stress y0 and the gradient of α

wp(α,∇α) =

∫ α

0

ŷM(α̃) dα̃ + y0
l2p

2
||∇α||2. (8)

Following [4] the fracture part of the work density is based on a geometric regularization of
sharp crack continuities and takes the form

wf (d,∇d) = 2
wc

ζ
lfγl(d,∇d) with γl(d,∇d) =

1

2lf
d2 +

lf

2
||∇d||2, (9)

in terms of the crack surface density function γl, the fracture slope parameter ζ and the fracture
length scale lf .

Dissipative Response

The dissipative response on the plastic side is characterized by the plastic yield function φp

which is expressed in the Kirchhoff stress space and derived from the classical Gurson yield
hypersurface for a porous material

φp(fp, rp; f) =
√

‖dev[fp]‖2 + 1

6
f(tr[fp])2 −

√
2

3
rp, (10)

where we introduced the plastic driving force fp := τ and the plastic resistance force rp :=
∂αW −Div(∂∇αW ). The initiation of fracture is determined by a fracture threshold function in
terms of the fracture driving force f f and the fracture resistance rf

φf (f f − rf ) := f f − rf := ∂dW −Div[∂∇dW ]. (11)

With these dissipative functions defined one can introduce a dual dissipation potential function

D∗ describing a viscous regularized evolution in terms of the dual constitutive state F

D∗(F) =
3

4ηp
〈φp(fp, rp; f)〉2 +

1

2ηf
〈φf (f f − rf )〉2 with F := {fp, rp, f f − rf}. (12)

Extended Variational Principle

Based on the introduced work density and the dual dissipation potential function, the global
extended rate potential for gradient plasticity coupled with gradient damage mechanics reads

Π∗(ϕ̇, α̇, ḋ,dp,F) =

∫

B

π∗(Ċ,F;C) dV − Πext(ϕ̇), (13)

where π∗ is the mixed potential density defined as

π∗(Ċ,F;C) =
d

dt
W (C) + fp : dp − rp · α̇+ (f f − rf ) · ḋ−D∗(F). (14)



The evolution problem is fully governed by the variational principle

{ϕ̇, α̇, ḋ,dp,F} = Arg{ inf
ϕ̇,α̇,ḋ,dp

sup
F

Π∗(ϕ̇, α̇, ḋ,dp,F)}. (15)

The corresponding Euler equations of this variational principle read

1. Stress equilibrium δϕ̇π
∗ ≡ −Div [ ∂∇ϕW ] = γ̄0

2. Hardening force δα̇π
∗ ≡ ∂αW −Div [ ∂∇αW ]− rα = 0

3. Fracture force δḋπ
∗ ≡ ∂dW −Div [ ∂∇dW ] + f f − rf = 0

4. Plastic force ∂dpπ∗ ≡ ∂heW + fp = 0

5. Plastic deformation ∂fpπ∗ ≡ dp − ∂fpD∗ = 0

6. Equivalent strain ∂rpπ
∗ ≡ −α̇− ∂rpD

∗ = 0

7. Fracture phase field ∂ff−rfπ
∗ ≡ ḋ− ∂ff−rfD

∗ = 0

(16)

along with the Neumann-type boundary conditions of the form

(∂∇ϕW )N = T̄ (X , t) on ∂BT , ∇α ·N = 0 on ∂B∇α , ∇d ·N = 0 on ∂B∇d (17)

For a more detailed description of the full model see [3].

Numerical Examples

A characteristic failure mode of porous plastic materials is the so called cup-cone failure mech-
anism, where the plastic deformation leads to a cup–cone fracture surface. To demonstrate
the capabilities of the presented model a three dimensional cylindrical bar under tension was
simulated. Figure 1 shows the load-displacement curve and the influence of the critical work
density wc and the fracture slope parameter ζ on it.

displacement ū [mm]displacement ū [mm]
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Figure 1. Influence of the fracture parameters wc and ζ on the crack initiation and propagation.

The deformation and the developing crack surface of the cylindrical bar at different sates are
visualized in Figure 2. When the yield limit is reached the bar starts to deform plastically leading
to necking. After the onset of plasticity the void volume fraction starts to evolve resulting in a
decreasing force. As soon as the threshold of fracture is overcome, e.g. we+wp > wc, the crack
starts to propagate from the center on outward to from the cup-cone fracture surface and the
force vanishes totally.

Conclusions

A variational-based framework for the phase field modeling of fracture in isotropic porous solids
was proposed. It incorporates a gradient extended model for porous plasticity and the phase
field approach to fracture in context of the finite strain theory. The formulation includes two
independent length scale parameters which regularize both the plastic response as well as the
crack discontinuities. It was shown that the model is able to represent the characteristic failure
mode, i.e. the cup-cone failure, of porous plastic material.



Figure 2. Three dimensional necking of a cylindrical bar. Evolution of the cup–cone failure mechanism.
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