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Micro Abstract
Phase separation during the intercalation of lithium ions can lead to degradation effects in some
cathode materials. A model describing lithium ion diffusion, electric potentials and small deformations
is introduced on the microscale. The Cahn-Hilliard equation is used in an electrochemical model.
coupled to linear elasticity of small strains in the electrode material. An immersed boundary
method is used with adapative time steps. Charging of porous microstructures is numerically simulated.
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Introduction

Some cathode materials in lithium-ion batteries show phase-separation during usage. The
imbalanced intercalation of the lithium ions into the lattice causes large concentration gradients.
The stresses resulting from these gradients can damage and destroy the battery cell. The computer
simulation of the stresses during charging and discharging can support the development of battery
cell structures.

A micromodel coupling lithium-ion diffusion to the electric potential and Butler-Volmer interface
currents and linear elasticity is applied [3]. It is extended by a phase-field model for the
phase-separation of lithium-rich and lithium-poor phases in lithium iron phosphate [2]. This
enables the resolution of a complex three-dimensional porous microstructure of the anode and
cathode material in the liquid electrolyte. Additionally mechanical stresses resulting from strains
depending on the concentration are computed [6].

The Cahn-Hilliard equation resulting from the phase-field model requires fine spatial resolutions.
A domain decomposition algorithm is introduced that allows for an efficient numerical solution
in each of the domains separately such that extensive numerical effort is constricted to the
cathode domain. The immersed interface method, first introduced in [4], is extended for diffusion
equations and the Cahn-Hilliard equation. By this, large, adaptive time steps are possible in
arbitrary complex domains [1].

Numerical examples demonstrate the coupling effects between the electro-chemical model and
the mechanical model. The lithium ion concentration results in an isotropic expansion of the
cathode material and stress residuals in the material. Also, the hydrostatic stress changes the
Nernst overpotential and the cell voltage is changed. Stress invariants and their maxima are
calculated depending on the microstructure during a charge cycle. Based on this, the damage
inside the electrode domain is predicted.

1 Electro-chemo-mechanical model

A cuboid domain Ω = (0, L1)× (0, L2)× (0, L3) ⊂ R3 denotes the microstructure of a battery
cell and consists of the two solid electrodes, anode Ωa and cathode Ωc, and the liquid electrolyte
Ωe. A time-dependent problem is posed on the domain T = (0, t0). For concentration, electric
potential and displacement, partial differential equations equations are given on each of the



three domains anode, cathode and electrolyte.

Transport equations in the electrolyte domain, the anode domain, and the cathode domain are
introduced separately based on [3] and [5]. The transport equations for ion concentration ce and
the electric potential φe in a liquid electrolyte, see [3], are considered as

∂tce = div
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RT
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Depending on the transference number t+, the transport of positive lithium ions is coupled to
the transport of additional negative anions. Inside the anode material the lithium ion diffusion
and the electric potential are decoupled by the equations

∂tca = div

[
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(
1− ca

cmax,a

)
∇µa(ca)

]
,

0 = div (κa∇φa) .

(2)

The stress-strain relationship model presented in this work is based on a linear-elastic model [6].
The strain ε is modified to include a chemical part, εel ..= ε− εch. The stress-strain relationship
is then given as

εel =
1

2
(∇u+∇uT )− θ

3
cI,

σ = λTr(εel)I + 2µεel,
(3)

By this, the electrochemical model and the mechanical model are coupled as

µel =
θ

3
tr(σ)⇔ εch =

θ

3
cI, (4)

where θ is the partial molar volume coefficient.

In the cathode, a phase-field model for the concentration cc is considered. The phase-field
parameter is here the normalized lithium ion concentration p = c

cmax,c
. A free energy with a

penalty gradient term is assumed as
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2
(∇p)2 , (5)

where the parameters G and L are used to describe the phase-field model. They represent energy
density and the width of the interface region, respectively. The chemical potential µ is now
given as the variational derivative by
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Combining (2) and (6), the equations governing the lithium ion concentration cc, the electric
potential φc and the chemical potential µ in the cathode material are given by
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On the electrode-electrolyte interfaces, interface conditions are defined by the Butler-Volmer
conditions as

ise = i0(cs, ce) sinh

(
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2RT
η

)
.fse =
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F
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F

+ Ūs, (8)



The function i0 is called the exchange current density, possibly defined as

i0(cs, ce) = 2k

√
cecs

cmax,s

2
. (9)

The electric current ise is used to define Neumann boundary conditions for the Poisson equations
for the electric potential while the concentration flux fse is used to define Neumann boundary
conditions for the diffusion equations of the lithium ion concentration. The Faraday constant
F acts as a coupling factor. By the positive lithium ion charge, diffusion is coupled to the
electric current. A fixed electric current is defined by the C-rate, usually specified in the unit
per hour, 1

3600s = 1
h . C-rate 1 defines a charging current iin such that it takes one hour to charge

the battery cell from empty to full state of charge. For the diffusion equations and the elastic
equations valid boundary conditions are considered. A discharged battery is considered for the
numerical simulation test case.

2 Numerical methods

First the governing equations of the electro-chemical model are separated into six smaller initial-
boundary-value-problems (IBVPs). The focus is on the coupling of those six different IBVPs in
anode, cathode and electrolyte for both lithium ion concentration and electric potential. The
coupling by the non-linear Butler-Volmer equations is solved by iteration. The convergence
order of the domain decomposition algorithm is one.

Next the immersed interface method (IIM) is introduced for the Poisson equation, the diffusion
equation, and the Cahn-Hilliard equation. For the solution finite difference stencils and implicit
Runge-Kutta schemes are applied. Methods with convergence order two, four and six are
defined for the periodic Poisson equation and the periodic diffusion equation. For the periodic
Cahn-Hilliard equation a method with convergence order two is defined.

Assume the diffusion equation on an arbitrary domain Λ. Then a discretization in time with
an implicit Euler method and in space with a symmetric finite difference stencil results in the
equation

(Ih + τ∆h)ch = čh, (10)

where ch and čh denote the concentration field for the current and previous timestep, respectively.
This equation is extended to include additional jump variables gh on the boundary ∂Λ that
allow for am embedding of the equation onto a larger cuboid domain Ω,(

Ih + τ∆h Ψ
D Ih

)(
ch
gh

)
=

(
čh
fh

)
, (11)

where fh denotes arbitrary Neumann boundary conditions on ∂Λ ⊂ Ω. The enlarged block
system is then reduced by Schur’s complement to(

Ih −D(Ih + τ∆h)−1Ψ
)

= fh −D(Ih + τ∆h)−1čh. (12)

This allows for an efficient numerical solution as the number of variables is significantly reduced.
Given a regular voxel mesh discretization with width h, the number of degrees of freedom inside
Λ is in O( 1

h3 ), while the number of degrees of freedom on the boundary domain ∂Λ is in O( 1
h2 ).

For the Poisson and the diffusion equation, second-order formulation for the immersed interface
methods can be given. For the Cahn-Hilliard equation, the linear operator resulting from the
discrete partial differential equation is more complex and only a first-order convergence can be
achieved.



Figure 1. Left: Phase-separating cathode microstructure of three spherical particles. Depicted is the
concentration inside the electrode and the lithium ion current in the electrolyte. Right: Cell voltage and
maximum non-dimensionalized stress invariants occuring in the electrode during a charge cycle.

3 Numerical examples

Figure 1 shows on the left the phase separation in a cathode microstructure made from three
spherical particles. On the right, the cell voltage and non-dimensionalized maximum stress
invariants occuring in the electrode during a charge cycle are depicted. The simulation results
of the phase separation are interpreted to allow for qualitative and quantitative prediction of
damage and fracture resulting from multiple charge cycles by extension of the linear elastic
model to e.g. include large deformations.

Conclusions

Currently, the evaluation of maximum stress invariants inside the battery electrode particles allow
only for rough qualitative prediction of time and point of failure. Different microstructures can
be analyzed and their advantages compared. Depending on material parameters the maximum
C-rate and cycling effects can be evaluated. In the future, additional damage or fracture models
allow for a more precise prediction of the aging under realistic load cases.
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