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Micro Abstract

Phase field models for fracture allow shaping the reliability of engineering components in the early
stage of the product development process. Epoxy-based molding compounds protect electronic
control units from harsh environments. Once this protection fractures, the electronic system fails.
Based on a fracture mechanical characterization of the mold material in the full temperature range,
computations are performed demonstrating the predictive quality of the phase field model of fracture.

1Corporate Sector Research and Advance Engineering, Robert Bosch GmbH, Renningen, Germany

*Corresponding author: fabian.welschinger@de.bosch.com

Introduction

Recently developed phase field models for fracture are powerful tools for modeling fracture
processes in solids caused by complex loading scenarios. In an industrial environment, these
models can be employed to shape the reliability of components in the early stage of the product
development process. In the automotive industry, epoxy-based molding compounds are used
to protect electronic control units from harsh environments. As illustrated in in Figure 1,
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Figure 1. Electronic control unit. Thermal load might result in fracture of the encapsulating mold material.

active cycling of the diodes causes heat generation inside the electronic system resulting into
inhomogeneous thermal strain and stress fields and potentially into fracture of the encapsulating
material. In this case the entire electronic system loses its functionality which must be prevented.

1 Phase Field Modeling of Fracture

Current industrial research focuses on the application of a current phase field model of frac-
ture [2, 3] extended towards thermally driven crack propagations as suggested by [5]. The
algorithm is implemented into Abaqus using the user element inteface. Regarding a sequen-
tially coupled thermo-mechanical simulation, the temperature field θ(x, t) is obtained from a
decoupled transient thermal simulation. In a subsequent mechanical analysis this temperature
field is applied as a prescribed body load. As a consequence, a strong coupling of the temper-
ature field with the mechanical response is present, whereas the fracture mechanical problem
does not influence the thermal response. The solution algorithm can be summarized as follows:



i. Initialization. The displacement, fracture phase, history and temperature fields un, dn,
Hn and θn at time tn are known. Update prescribed loading γ̄, ū, t̄ and θ̄ at time t.

ii. Compute history. Determine maximum crack driving function in deformation history
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in the domain B and store it as a local history variable field.

iii. Compute fracture phase field. Determine the current fracture phase field d at frozen
temperature field θ from the minimization problem of crack topology
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d
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expressed in terms of the crack surface density function
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iv. Compute displacement field. Determine the current displacement field u at frozen fracture
phase and temperature fields d and θ from the minimization principle of elasticity

u = arg inf
u

[
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t̄ · u dA

]

(4)

in terms of the damaged free energy density function

ψ(∇su, d; θ) = g(d)ψ+
0 (∇su; θ) + ψ−

0 (∇su; θ) (5)

where the damage function g(d) = (1− d)2 + k is multiplied to positive portions only
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expressed in terms of the elastic stress producing strains εe(∇su; θ) = ∇su− αt∆θ 1. The
decomposition of the total elastic strains into positive and negative contributions

εe±(∇su; θ) =

3
∑

I=1

〈εeI〉±nI ⊗ nI (7)

bases on a spectral representation with eigenvalues εeI and principal directions nI .

The above solution algorithm is summarized in a very compact manner, for more detailed
reading consult the publications cited above.

2 Fracture Mechanical Characterization with Compact Tension Test

The fracture mechanical tests are performed in the full temperature range of interest according
to [1]. The resulting structural responses are illustrated in Figure 2. As expected the material
exhibits the highest stiffness at low temperatures and increasing temperatures means a decreas-
ing material stiffness. Due to increasing mobility of polymer chains at elevated temperature
the ductility of the material increases with temperature. At θ = 150 ◦C the amount of nonlin-
earity in the material response exceeds the permissible range for the evaluation of the critical
energy release rate characterized by Fmax/F95% > 1.1. In a moderate temperature range the
critical energy release rate over temperature can be assumed to be constant below room tem-
perature GIc(θ) = GRT

Ic
and to increase linearly with the temperature above room temperature

GIc(θ) = GRT
Ic

+∆GIc(θ − θRT ) with G
RT
Ic

= 0.0841 N/mm and ∆GIc = 0.0007 N/(mmK).
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Figure 2. Compact tension test. Corrected load displacement curves according to [1] and resulting critical
energy release rates over temperature. With increasing temperature the ductility of the material increases.

3 Validation of Simulation Methods

In what follows, the phase field model for fracture discussed in Section 1 in combination with the
material parameters identified in Section 2 is validated based on two fundamental experiments.

3.1 Compact Tension Test

The first example used for validation of the simulation method is the compact tension test. In
Figure 3 the experimentally determined load-deflection curves at temperatures of θ = 100 ◦C
and θ = 150 ◦C are compared to numerical results obtained with a linear elastic fracture model
realized with the extended finite element method and with the phase field model discussed
previously. In the temperature range of interest, away from the glass transition temperature,
the fracture mechanical behavior of the material can be predicted very nicely.

3.2 Compact Tension Shear Test

The last example discusses the influence of the mode mix ratio. As suggested by [4], the CTS
specimens are loaded with different loading angles α. Figure 4 compares the experimentally and
numerically obtained crack topologies for all variations of the loading angles. Figure 5 compares
the ultimate force at rupture for different loading angles α and displays the crack topology for
the loading angle α = 45.0 ◦. Both figures demonstrate very nicely the good prediction quality
regarding the resulting crack pattern and the ultimate load at fracture. Compared to the
fracture mechanical analysis using the extended finite element method the phase field approach
yields values that are slightly closer to the experimental observations.
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Figure 3. Validation with compact tension test. Good prediction quality at a temperatures of θ = 100 ◦C
and moderate accuracy at θ = 150 ◦C due to increasing ductility around glass transition temperature.
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Figure 4. Validation with compact tension shear test. Good prediction quality regarding crack path.
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Figure 5. Validation with compact tension shear test. Good estimates for ultimate load at failure.

Conclusions

The main ingredients of a phase field model for thermally induced fracture and the required frac-
ture mechanical characterization have been discussed. A comparison of numerical simulations
and real experiments document an excellent prediction quality in the full temperature range.

References

[1] ISO 13586: Plastics – Determination of fracture toughness (GIc and KIc) – Linear elastic
fracture mechanics (LEFM) approach. ISO 2000 International Standard, 2000.

[2] C. Miehe, M. Hofacker, and F. Welschinger. A phase field model for rate-independent
crack propagation: Robust algorithmic implementation based on operator splits. Computer
Methods in Applied Mechanics and Engineering, Vol. 199: p. 2765–2778, 2010.

[3] C. Miehe, F. Welschinger, and M. Hofacker. Thermodynamically consistent phase-field
models of fracture: Variational principles and multi-field FE implementations. International
Journal for Numerical Methods in Engineering, Vol. 83: p. 1273–1311, 2010.

[4] H. A. Richard. Bruchvorhersagen bei überlagerter Normal- und Schubbeanspruchung von
Rissen. VDI Forschungsheft, Vol. 631: p. 1–60, 1985.

[5] F. Welschinger and P. J. Gromala. Simulation methods for crack initiation and propaga-
tion in bulk mold material of electro mechanical components. Electronic Components and
Technology Conference (ECTC), IEEE 66th: p. 1039–1046, 2016.


