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Micro Abstract

This paper presents a novel parameter identification toolbox based on various multi-objective opti-
mization strategies for the selection of the best constitutive models from a given set of homogeneous
experiments. The toolbox aims at providing an objective model selection procedure along with the
material parameters for the rubber compound at hand. To this end, we utilize the multi-objective
optimization using genetic algorithm of MATLAB. For the validation purposes, we use 10 constitutive
laws.

!Department of Mechanical Engineering, Middle East Technical University, 06800, Ankara, Turkey

* Corresponding author: dal@metu.edu.tr

Introduction

The micromechanically based network models are known to be superior over the purely phe-
nomenological models in the analysis of unfilled rubber. However, various factors play a crucial
role in the determination of the appropriate constitutive model for the analysis of technical rub-
bers. These are; (i) the number of available experiments under various loading conditions, (ii)
maximum stretch level expected in the critical loading scenarios of the rubber component, and
(iii) percentage of fillers and additives that might distort the mechanical response from that of
an ideal rubber. Moreover, the number of material parameters to be identified should be as low
as possible and the parameters should be physically interpretable. Although the recent reviews
have been very useful for the assessment of the strengths and weaknesses of various constitu-
tive models, especially on the modeling of uncrosslinked ideal rubber, it is still a challenging
endeavour for engineers to decide the best constitutive model for the specific rubber compound
at hand [6, 13]. This paper presents a novel parameter identification toolbox based on various
multi-objective optimization strategies for the selection of the best constitutive models from a
given set of uniaxial tension, pure shear and equibiaxial tension experiments [14]. The toolbox
aims at providing an objective model selection procedure along with the material parameters
for the rubber compound at hand. To this end, we utilize the multi-objective optimization using
genetic algorithm. For the validation purposes, we select the best ten models sorted according
to the quality of fit expression provided in the manuscript, see also [6, 9]. The multi-objective
optimization toolbox is shown to be a very efficient tool for the parameter identification and
objective constitutive model selection procedure. We employed the developed optimization pro-
cedure for the determination of best hyperelastic constitutive models with respect to the quality
of fit to Treloar’s data [14].

1 Optimization Procedure

The complexity of the parameter identification for each model is unique since they have dif-
ferent number of parameters and different notion or paradigm of modeling (i.e. mathematical,
phenomenological or physical modeling). A model can only provide a limited portrait of physi-



cal phenomena since consideration all the way down to the atomic scale is not possible by the
current technological means. Therefore, lower or upper bounds of the search domain cannot
be determined or deduced from the model itself. Hence, every optimization procedure has to
be bound with sufficiently large search domain but not infinity if we are to try to find the
global minimum. However, certain parameters due to modeling procedure has natural bounds.
Genetic algorithm provides a straightforward mechanism to obtain the best parameters minimiz-
ing the cost function given the search domain. In this work, we developed a genetic algorithm
that is adaptable to models with different number of parameters and different search domains.
After finding the parameters via the genetic algorithm we provided these values to MATLAB
Optimization Toolbox nonlinear programming tool as initial parameters. Concurrently, the
MATLAB Optimization Toolbox is utilized for the identification of the best parameter set.
Both results are compared and the parameter set with the best quality of fit measure is selected.
This ensures that the best fit is the absolute minimum in the search domain. We observed quite
similar parameters that reported in review papers [6, 9]. The error expressions for uniaxial
tension (UT), equibiaxial tension (ET), and pure shear (PS) loading modes are provided as
follows,
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As opposed to mainstream single-objective optimization procedure, in this work we used a multi-
objective optimization. We weight the uniaxial, equibiaxial, and pure shear error expressions
with three weight parameters (wy,ws,ws), resulting in the cost function

E = wiey +waeer + wW3Eps , (2)

where w1 + we + w3 = 1. Note that, the optimization procedure takes the weight factors w;
and wo as optimization parameters in addition to the material parameters. This fact is the
novel aspect of the procedure. Hence, we signify the different sensitivity of each constitutive
model to different deformation modes in error expression. This way, inherent deformation mode
dependencies of constitutive models are buried deep within the optimization procedure.

1.1 Results and Conclusion

In this study, 10 best hyperelastic material models are chosen among 38 hyperelastic constitutive
models sorted according to the best quality of fit measure. In order to make an unbiased
comparision between the considered hyperelastic material models, a fit of quality measure with
the following form is proposed

X2 _ z; ( 11P161$p ) , (3)
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where m is the total number of experimental data points. x? measure is considered for each
model in three regions of deformation. Low stretch (1 < \ < %)\mam), moderate stretch (1 < A <
%)\max), and large stretch (1 < A < Ajpqz) regions are denoted as region 1, region 2, and region
3, respectively. Here, A\, is the maximum stretch value attained during the experiment under
uniaxial tension, equibiaxial tension and pure shear loading, respectively. The obtained results
are summed over loading cases for each region to yield total quality of fit measure for each
region. Therefore, the total quality of fit for the third region would be a reasonable measure for
comparing models in an ubiased way. Obtained results are listed in Tables 1-2 according to the
goodness of fit for full range of extension with simultaneous fitting of uniaxial, equibiaxial, and
pure shear data. Since the models have different quatify of fit values for different regions and
region 3 encompasses all other regions, the comparison is done based on the quality of fit value
in region 3. Related plots for fitting the material parameters with three sets of experimental



data and uniaxial data (only) are presented in Figures 1-2, respectively. Uniaxial data fitting
is carried out to show how well a model can predict other deformation modes if a single set of
experiments are used for fitting.

Micro-sphere model [10]
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Simultaneous data fitting Uniaxial data fitting

Parameters w=0.2939 N =21.99 ©=0.2047 N = 31.33

p=1462 U =1.433 p=3.347 U =1.315

q =0.0554 q =0.09197
Quality of fit Quality of fit
Weights Error Region 1 Region 2 Region 3 Error Region 1 Region 2 Region 3

uT 0.2009 0.0032 0.0058 0.0086  0.0265 0.0043 0.0304 0.0520  0.0687
ET 0.5990 0.0006 0.0215 0.0217 0.0261 0.1010 0.0100  0.0277  0.8579
PS 0.2001 0.0003 0.0113 0.0115 0.0131 0.0013 0.0082 0.0196 0.0280
Total 1.0000 0.0041 0.0386 0.0418  0.0657 0.1066 0.0486  0.0993  0.9545

Alexander’s model [1]
W =C1 [ exp[k(Iy - 3)2]dI + CoIn [ L22040 | 4 (13 - 3)

Simultaneous data fitting Uniaxial data fitting
Parameters C1 =0.1403 C2 = 0.2588 C1=0.1314 C2 = -0.3305
C3 =0.002143 ~ = 5.991 C3 =0.0985 v = 5.814
k =0.0003464 k =0.0003619
Quality of fit Quality of fit
Weights Error Region 1 Region 2 Region 3 Error Region 1 Region 2 Region 3
uT 0.3470 0.1073 0.0073 0.0096  0.0309 0.1053 0.0149 0.0185 0.0391
ET 0.3495 0.0079 0.0231 0.0242 0.0266 828.50 0.0345 7.7825  409.96
PS 0.3036 0.0036 0.0122 0.0126  0.0140 1.4855 0.0209 0.0487  1.0460
Total 1.0000 0.1188 0.0427 0.0465 0.0715 830.10 0.0703  7.8497  411.05

Extended-tube model [7]
—62)(D- - .
v= G [ G55 +n(1-02(D-3)) |+ 2= 9%, (A -1) with D=5%_, )3

2
Simultaneous data fitting ’ Uniaxial data fitting
Parameters Gc =0.1956 § = 0.09532 G =0.1105 § = 0.1039
Ge =0.1949 5=0.1759 Ge =0.2047 B =-1.779
Quality of fit Quality of fit
Weights Error Region 1 Region 2 Region 3 Error Region 1 Region 2 Region 3
UT 0.2002 0.1417 0.0027 0.0055  0.0325 0.0833 0.0281 0.0311  0.0466
ET 0.5997 0.0235 0.0163 0.0352  0.0392 0.6622 0.0731 0.2349  0.5210
PS 0.2000 0.0023 0.0083 0.0084  0.0096 0.0303 0.0455 0.0692  0.0754
Total 1.0000 0.1675 0.0274 0.0491  0.0812 0.7758 0.1467 0.3352  0.6430
Shariff’s model [12]
Y = Z?:l a;p;
Simultaneous data fitting Uniaxial data fitting
Parameters E=1124 a1 =0.9174 E=1.254 a; =-4.12
az =0.03712 a3 = 7.872e - 05 az =0.05454 a3 = 10.6
ay =0.02361 ayg =-0.3131
Quality of fit Quality of fit
Weights Error Region 1 Region 2 Region 3 Error Region 1 Region 2 Region 3
uT 0.2065 0.1611 0.0117  0.0178  0.0470 0.0952 0.0048 0.0087  0.0276
ET 0.3182 0.0102 0.0243 0.0286  0.0305 2.9e10 1.3098 5.4e06  1.3el0
PS 0.4753 0.0055 0.0111 0.0119  0.0143 4.4e05 0.5884  807.88  2.8e05
Total 1.0000 0.1768 0.0471  0.0583  0.0918 2.9e10 1.9029 5.4e06  1.3el0

Carroll’s model [3]
Y= Al + BI} + CVIy

Simultaneous data fitting Uniaxial data fitting
Parameters A =0.1458 B =3.191e - 07 C' =0.1044 A =0.1574 B =2.916e - 07 C = 0.1005
Quality of fit Quality of fit

Weights Error Region 1 Region 2 Region 3 Error Region 1 Region 2 Region 3
uT 0.3333 0.1668 0.0119 0.0156  0.0475 0.3021 0.0177 0.0582 0.1038
ET 0.3333 0.0127 0.0359 0.0465  0.0476 0.0301 0.0248 0.0333  0.0455
PS 0.3333 0.0065 0.0199 0.0221  0.0235 0.0423 0.0116  0.0153  0.0453
Total 1.0000 0.1860 0.0678 0.0842 0.1186 0.3745 0.0540 0.1068  0.1946

Table 1. Obtained parameters, errors, and quality of fit values for the first five models.



Chevalier and Marco’s model [4] _
L% ?:Oai(h 73)1 and 2L = > by

oI, ol =0 1;’
Simultaneous data fitting Uniaxial data fitting
Parameters ap = 0.1585 a1 = -0.002321 ap = 0.1833 a1 = -0.004043
a2 =0.0001175 by = 0.002048 a2 = 0.0001431 by = 0.0003649
b1 = 0.2266 by = —0.4902 b1 = 0.001588 bg = —0.3825
Quality of fit Quality of fit
Weights Error Region 1 Region 2 Region 3 Error Region 1 Region 2 Region 3
uT 0.3226 0.3114 0.0161 0.0255  0.0834 0.2483 0.0387  0.0552  0.1030
ET 0.5643 0.0236 0.0290 0.0324  0.0428 0.8830 0.1207 0.3281  0.7348
PS 0.1131 0.0108 0.0138 0.0174 0.0221 0.0876 0.0681 0.0860  0.1267
Total 1.0000 0.3458 0.0588 0.0753  0.1482 1.2190 0.2275 0.4693  0.9645

Ogden’s model [11]
w=¥L, (A0 g+ A" - 3)

i=1 ay,

Simultaneous data fitting Uniaxial data fitting

Parameters a1 =1.873 az =7.991 a1 =1.873 az =7.991

az =-1.845 u1 =0.364 asz =-1.845 puy1 =0.364

p2 =2.706e — 06 p3 = —0.01659 p2 =2.70le - 06 pu3 = -0.0166
Quality of fit Quality of fit
Weights Error Region 1 Region 2 Region 3 Error Region 1 Region 2 Region 3

uT 0.3333 0.1720 0.0161 0.0320 0.0631 0.1723 0.0161 0.0320 0.0630
ET 0.3333 0.0423 0.0371 0.0593 0.0736 0.0423 0.0370 0.0592  0.0737
PS 0.3333 0.0106 0.0177 0.0190 0.0237 0.0107 0.0177 0.0190 0.0237
Total 1.0000 0.2249 0.0709 0.1103  0.1604 0.2253 0.0709 0.1102 0.1604

Haines-Wilson’s model [5]
Y=C10(J1-3)+Co1(I2-3)+C11(I1 -3)(I2 = 3) + Co2(I2 — 3)2 + Co0(I1 - 3)2 + Cso(I1 - 3)3

Simultaneous data fitting Uniaxial data fitting

Parameters C10 =0.1845 Cp1 = 0.007551 C10 =0.000145 Cp1 =0.2141

C11 =-0.0001221 Cop2 = 1.989¢ - 06 C11 =0.03559 Coz = 8.547e — 05

Cyp = -0.001895 C3p = 4.598e — 05 Cap = -0.008685 C3g = 6.944e — 05

Quality of fit Quality of fit
Weights Error Region 1 Region 2 Region 3 Error Region 1 Region 2 Region 3

uT 0.6420 0.2868 0.0430 0.0827 0.1284 0.1856 0.0054 0.0106 0.0478
ET 0.2545 0.0079 0.0228 0.0297  0.0303 3.7e05 0.0629  550.55  1.7e05
PS 0.1036 0.0255 0.0088 0.0154  0.0289 461.76 0.0212  2.2490 294.44
Total 1.0000 0.3202 0.0747 0.1278 0.1876 3.7e05 0.0895 552.81  1.7e05

Biderman’s model [2]
¥ =Cro(I1 - 3) + Co1(I2 - 3) + Cao(I1 — 3)% + Cao(I1 - 3)3

Simultaneous data fitting Uniaxial data fitting

Parameters C10=0.1832 C01 = 0.002751 C10=0.1726 C01 = 0.003676

C20 =-0.001717 C30 = 4.351e - 05 C20 =-0.00175 C'30 = 4.542e — 05

Quality of fit Quality of fit
Weights Error Region 1 Region 2 Region 3 Error Region 1 Region 2 Region 3

uT 0.2007 0.3167 0.0353 0.0738  0.1252 0.2546 0.0171  0.0312  0.0806
ET 0.5991 0.0629 0.0299 0.0644  0.0864 0.1399 0.0418 0.1079  0.1533
PS 0.2002 0.0118 0.0118 0.0142  0.0203 0.0584 0.0195 0.0213  0.0559
Total 1.0000 0.3914 0.0770 0.1525  0.2319 0.4529 0.0783  0.1603  0.2898

Lambert-Diani and Rey’s model [8]
= [ exp{Ehoai(l-3) Jdh + [ exp{ T2, bi(ln o)’ }dl

Simultaneous data fitting Uniaxial data fitting
Parameters ap =0.1644 a1 = -0.003781 ao = 0.1529 a1 = -0.003198
az = 0.0003629 by = 257.5 a2 =0.0003786 by = 250.6
b1 =-7.6 by =-7.42
Quality of fit Quality of fit
Weights Error Region 1 Region 2 Region 3 Error Region 1 Region 2 Region 3
uT 0.1215 0.1781 0.0103 0.0446  0.0746 0.1010 0.0017 0.0036  0.0242
ET 0.6608 0.6373 0.0065 0.1164 0.4102 0.9442 0.0065 0.1897  0.6232
PS 0.2177 0.0050 0.0058 0.0085 0.0105 0.0341 0.0056 0.0218  0.0382
Total 1.0000 0.8204 0.0226 0.1695  0.4953 1.0793 0.0138 0.2151  0.6856

Table 2. Obtained parameters, errors, and quality of fit values for the last five models.
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Figure 1. Results of simultaneous fitting of uniaxial, equibiaxial, and pure shear (Treloar) data to 10 models:
a) Micro-sphere model, b) Alexander's model, c) Extended-tube model, d) Shariff's model, e) Carroll's model,
f) Chevalier and Marco's model, g) Ogden's model, h) Haines-Wilson's model, i) Biderman's model, j)
Lambert-Diani and Rey's model.
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Figure 2. Results of fitting of uniaxial (Treloar) data to 10 models: a) Micro-sphere model, b) Alexander’s

model, ¢) Extended-tube model, d) Shariff's model, e) Carroll's model, f) Chevalier and Marco’'s model, g)
Ogden's model, h) Haines-Wilson's model, i) Biderman's model, j) Lambert-Diani and Rey's model.
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