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Micro Abstract
A phase field model of fracture that accounts for anisotropic material behavior and crack propagation
is presented within the small and large deformation context. Different kinds of material anisotropy are
incorporated by (i) enhancing the crack surface density function by appropriate structural tensors
stemming from a rigorous application of the theory of tensor invariants and (ii) by a modification of
energetic and stress-like fracture criteria.
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Phase Field Approximation of Anisotropic Crack Topology

Consider a bounded domain B ⊂ Rω, ω ∈ {2, 3} with boundary ∂B. We introduce the crack
phase field d : B × T → [0, 1], (x, t) 7→ d(x, t), where d = 0 characterizes the unbroken and d = 1
the fully broken state of the material at x ∈ B. The parameter t represents for rate-independent
problems an incremental loading parameter and for rate-dependent problems the time. The
regularization of a sharp crack topology in isotropic solids bases on the crack surface density
function

γl(d,∇d) =
1

2l
d2 +

l

2
∇d · ∇d and γl(d,∇d,∇2d) =

1

2l
d2 +

l

4
∇d · ∇d+

l3

32
∇2d : ∇2d , (1)

respectively, in terms of the fracture length scale parameter l, see [4] and [1]. To outline an
extension to a class of anisotropic response, we consider the anisotropic crack surface density
function up to second order satisfying

γl(d,Q ?∇d,Q ?∇2d) = γl(d,∇d,∇2d) for all Q ∈ G ⊂ O(3) (2)

with G denoting the symmetry group of the given anisotropic material. Following the represen-
tation theory of isotropic tensor functions outlined e.g. in [8], a quadratic function must have
the form

γl(d,∇d,∇2d;A,A) = γl(d
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in terms of the symmetric second- and fourth-order structural tensors A and A. For an
orthotropic microstructure based on three structural directors {ai}i=1,3 satisfying ‖ai‖ = 1,
ai · aj = δij and ai × aj = εijkak we can for instance introduce the simple structural tensors

A = 1 + α1M1 + α2M2 and A = IA =
1

2
( [A]ik[A]jl + [A]il[A]jk )ei ⊗ ej ⊗ ek ⊗ el (4)

in terms of M i = ai ⊗ ai and two material parameters α1, α2 only1. More complicated forms
are given in [7]. For a cubic microstructure a simple fourth-order structural tensor depending on

1For a simple treatment of transverse isotropy characterized by the structural vector a = a1 representing the
fiber orientation, we just set α2 = 0 in (4) and (6)1.



two material parameters α, β has the form

A = I + α(M1 ⊗M1 +M2 ⊗M2) + β sym(M1 ⊗M2) . (5)

Note, that the material parameters have to lie within the open ranges (α1, α2) = (−1,∞) ×
(−1,∞) and α > −1 along with |β| < 2|1 + α|, respectively, to ensure positive definiteness of
the corresponding structural tensors defined in (4) and (5). Finally, we consider a point xΓ on
a straight sharp crack Γ ⊂ B ⊂ R2 inclined under an angle ϕ, which is located sufficiently far
away from the crack tip. Assuming the (effective) fracture length scale to be small compared to
the length |Γ| of the sharp crack, the structural tensors (4)1 and (5) of orthotropy and cubic
symmetry imply the effective length scale parameters

l∗ = l[1 + α1 sin2(ϕ− θ) + α2 cos2(ϕ− θ)] and l∗∗ = γ{1 + δ cos[4(ϕ− θ)]}
1
3 (6)

in terms of the given angle θ representing the inclination of the structural director a1, and the
material parameters α1, α2 and γ, δ, respectively, latter depending on l, α, β. Note, that the
cubic length scale parameter (6)2 shows a classical four-fold symmetry, whereas the orthotropic
length scale parameter (6)1 yields a two-fold symmetry.

Evolution Problem of Anisotropic Phase Field Fracture

In the small-strain setting, the motion of the fracturing solid body is described by the displacement
field u : B × T → Rω, (x, t) 7→ u(x, t). We consider a “total” pseudo energy functional and a
dissipation potential functional

W (u, d;A,A) =

∫
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in terms of a “total” pseudo energy density function w and a convex, non-smooth dissipation
potential density function v. With these two functionals at hand, the variational principle for
the evolution problem of phase field fracture reads
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with Wu̇ = {u̇ ∈ H1(B)| u̇ = ˙̄u on ∂Bu} according to the decomposition of the boundary into
Dirichlet and Neumann parts. The Euler equations of the variational principle (8) are simply
the quasi-static stress equilibrium and the crack phase field evolution equation

δuw = 0 and 0 ∈ δdw + ∂ḋv (9)

along with the Neumann-type boundary conditions. Accounting for the irreversibility ḋ ≥ 0 of
the fracture phase field, the dissipation potential function reads v(ḋ) = I(ḋ) + η

2 ḋ
2 in terms of

the indicator function of positive real numbers and a mobility parameter η. With this specific
form, the evolution equation for the crack phase field attains a Ginzburg-Landau-type structure
which, by a specific choice of the degradation function, may be recast into

η̃ḋ = (1− d)H+ l δdγl with H = max
s∈[0,T ]

D̃(state(x, s)) (10)

in terms of the crack driving state function D̃, see [3]. As a specific example, we choose the
“total” pseudo energy density function

w(d,∇d,∇2d;A,A) = (1− d)2ψ̃(ε) + gcγl(d,∇d,∇2d;A,A) (11)

in terms of the (anisotropic) effective energy stored per unit volume in the undamaged bulk
and the material parameter gc which within this setting does not represent Griffith’s critical



energy release rate. The representation (11) characterizes a brittle fracture model without
an elastic phase and yields the crack driving state function D̃ = 2ψ̃(ε)/(gc/l). To distinguish
between energetic tensile and compressive parts within the anisotropic material, the effective
stress σ̃ = ∂εψ̃ is decomposed into a positive part σ̃+ and a negative part σ̃− via a spectral
representation of σ̃. For e.g. a transversely isotropic material with the fiber direction represented
by the structural vector a, the positive and negative stress function follow as

ψ̃∗±(σ̃) = p1〈tr[σ̃]〉2± + p2 tr[σ̃±σ̃±] + p3〈tr[σ̃(a⊗ a)]〉2± (12)

in terms of the ramp functions of R+ and R− expressed by the Macaulay bracket. With a
decomposition of the form (12) at hand, we modify the crack driving state function given above
in the way D̃ = 2ψ̃∗+(σ̃)/(gc/l).

Anisotropic Fracture Toughness and Crack Propagation

To calculate the accumulated dissipation D per unit crack length, we again consider a straight
crack Γ ⊂ B ⊂ R2 for simplicity and express the crack phase field in terms of the coordinate η,
the coordinate line of which is perpendicular to the crack with η = 0 locating a point on Γ. For
an orthotropic material characterized by the second-order structural tensor (4)1 we obtain
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Then, as long as the effective length scale is small compared to the crack length and the dimension
of the body, the accumulated dissipation due to fracture plays the role of Griffith’s crititcal
energy release rate

Gc(ϕ; θ) = D , (14)

see [5] for the case of isotropy. Apparently the fracture toughness depends on the angle of crack
propagation relatively to a given structural director. Note, that in the isotropic scenario we
obtain Gc = gc. According to [2] the crack propagation angle ϕ under quasi-static loading is the
one for which Griffith’s criterion is first reached such that

G(ϕ)

Gc(ϕ; θ)
is maximized globally, (15)

where G(ϕ) denotes the energy release rate. At this point the distinction between weakly and
strongly anisotropic systems should be mentioned, the latter one allows the crack to be guided
along forbidden directions, see [6] and [7].

Numerical Example

We consider as a boundary value problem a square plate which contains a notch running from
the left edge to the center of the body. The bottom of the specimen is fixed in vertical direction
whereas at the top a linear increasing displacement in vertical direction is applied. The material
is transversely isotropic with fiber direction given by the structural director a which is inclined
under 45◦. The anisotropic crack topology is modeled by the second-order structural tensor
(4)1 with α2 = 0. The crack path can theoretically be predicted by the criterion (15) using
expression (13) for the fracture toughness (weakly anisotropic system). Following [6], latter can
graphically be translated in the following way: the crack angle is determined by the point on the
G−1
c (ϕ; θ) polar plot which is first tangentially touched by a vertical line moving continuously

from right to left during monotonous loading of the specimen, see Figure 1, where the mentioned
tangency point is marked in red. The leftwards moving vertical line represents the polar plot of
the reciprocal energy release rate G−1(ϕ), what is only an approximation here. This, and the
circumstance, that the sensitivity of the crack propagation angle ϕ with respect to the anisotropy



Figure 1. Fracture of a transversely isotropic specimen under tension for a) α1 = −0.5 and b) α1 = 5.0.

parameter α1 is high in the low-α1 range, lead for small α1 to a deviation of the theoretically
predicted crack propagation angle from the one obtained by the phase field simulation. For a
higher anisotropy parameter however, the theoretical predictions of ϕ and the numerical results
are in good agreement, see Figure 1. Apparently the larger α1 is, the later the specimen cracks.
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