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Micro Abstract
Understanding the mechanisms of micro-crack initiation in metals is of high academic as well as
industrial interest. In this contribution, we discuss the role of stress concentrations in metal matrix
composite materials as the cause of crack initiation. Using a continuum representation of dislocation
microstructures, we compare microscale simulations to experimental studies of crack initiation and
discuss the dislocation microstructure around a crack tip.
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Introduction

Classical approaches to fracture mechanics deal with the propagation of existing cracks. However,
a major part of the lifetime regarding material fatigue is spent on micro-crack initiation rather
than significant crack propagation [1]. This is also the case in metal matrix composite materials
incorporating inclusions, where debonding of the inclusion from the matrix is assumed to take
place due to crack initiation at the interface [1]. Therefore the understanding and development
of predictive modeling techniques for determining possible locations and causes leading to crack
initiation is a central aspect in predicting the failure behavior of a material. In this paper,
we discuss the role of stress concentrations in a metal matrix composite as the location and
cause of crack initiation. Using a continuum representation of dislocation microstructures, which
was previously developed in [2] and the numerical solution method derived in [3], we consider
dislocation motion and interaction to determine localizations of concentrated plastic slip in
simplified two- and three-dimensional composite systems. We then discuss the influence of
resulting stress concentrations regarding crack initiation and subsequent material failure.

Dislocation transport and interaction in a continuum model

The elasto-plastic framework of the formulation used in this paper was introduced in [3] and
is based on a decomposition of the distortion tensor into an elastic and a plastic part by
Du = βpl + βel. For the plastic part, we consider only dislocation movement and interaction
on multiple slip systems with with the local orthonormal basis {ds, ls,ms} and the Burgers
vector bs = bsds. The evolution of the plastic slip γs on each slip systems s is then given by
the Orowan equation ∂tγs = vsbsρs The plastic distortion βpl is given as the summation of the
plastic slip over all slip systems βpl =

∑N
s=1 γsds⊗ms.

Concerning the evolution of the dislocation density ρs, we solve a set of partial-differential
equations, as introduced in [2]:

∂tρs = −∇ · (vsκ⊥s ) + vsqs with κ⊥s = κs ×ms
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To close the equations, we define a velocity law for which we assume a linear dependency on the
resolved shear stress τrss by

vs=vs(τrss)=
bs
B

(τext + τint) (2)

with B as a drag coefficient. τext is the projection of the external load on the local slip systems
by τs=ds · σms and τint includes the internal stress fields resulting from dislocation interaction.
The long-range stresses are resolved by a mean-field approach between different elements. To
account for short-range stresses, we add further stress terms based on the formulations described
in [4]. To consider interactions of dislocations on different slip systems, we incorporate the
extended ’Taylor formulation’ developed by [5]

τfl,s = µbs

√∑
j

as,jρj (3)

where µ denotes the shear modulus. This formulation combines the contribution of the density
on each slip system ρj weighted by the respective interaction strengths as,j to an average flow
stress for each slip system separately.
In the following we will show 2D as well as 3D results. For the 2D case, we simplify the
formulation according to [6]. Here we only consider straight edge dislocations in single-slip
condition and replace the flow-stress by a model allowing for dislocation dipole interaction,
cf. [6].

System setup

We analyze a simplified Al-SiC composite structure. The system geometry is shown in Fig.

(a) (b) (c)

Figure 1. System setup 2D (a,b), cf. [6], and 3D (c) acc. to [7].

1(a,b). It consists of 5 inclusions arranged in hexagonal shape with periodic boundary conditions
at the left and right boundaries. We consider two different shapes of the inclusions, one with
rectangular inclusions and no unblocked slip planes, see Fig. 1(a) and one with quadratic
inclusions, which lead to unblocked slip channels above and below the central inclusion, see
Fig. 1(b). The system is rectangular with dimensions ly = 2 µm and lx/ly =

√
3. The upper

and lower boundaries are subjected to a quasi-static shear loading. The material parameters
are given by the elastic moduli Ematrix = 70 GPa, ESiC = 6.4 · Ematrix, the Poisson’s ratio
νmatrix = 0.3, νSiC = 0.5 · νmatrix and a Burger’s vector of b = 0.256 nm. An initial dislocation
density of ρ = 1.083 · 1014m−2 is homogeneously distributed over the system. For further details
of the model and initial condition is referred to [6].
In a second consideration, we analyze a 3D system, which is shown in Fig. 1 (c). In order to
compare the continuum results with Discrete Dislocation Dynamics (DDD) - results from [7],
the inclusion distribution and distance has been chosen accordingly. In order to mimic periodic
boundaries, we chose a system size of 4.376 × 4.376 × 4.376 µm which is significantly larger
compared to [7]. The inclusions have volume fractions of 5, 20 and 45%. The elastic parameters
are Ematrix = 71.3 GPa, ESiC = 5.2 ·Ematrix, νmatrix = 0.347, νSiC = 0.67 · νmatrix and a Burger’s



vector of b = 0.256 nm. We include all 12 fcc slip systems, the [001]-direction coinciding with
the z-coordinate parallel to the vertical axis of the inclusions. The system is initially filled with
a homogeneous density of ρ = 1.75 · 1013m−2 and then subjected to a transversal tension in
y-direction with a constant strain rate of 1000s−1.

Results

Using the 2D system shown in Fig. 1(a,b), the stress-strain curves are computed and compared
to DDD-data from [8], see Fig. 2(a). It can be seen that blocking all slip planes induces linear
hardening, whereas the system with free slip channels shows almost perfect plasticity. The reason
for this behavior is that there are strong pile-ups near the interfaces to the inclusions for the
system with fully blocked slip planes, see Fig. 2(b, left). In this area, there is high dislocation
activity due to stress concentrations induced by inclusion corners. Compared to that, the system
with free slip channels shows only very small pile-ups in magnitude and distribution, see Fig.
2(b, right). Here, the plastic slip concentrates almost exclusively on the free slip channels.

(a) (b)

Figure 2. stress-strain curves compared to DDD-data from [8] (a), pile-ups at inclusions visible in the
GND-density distribution for the system with blocked slip planes (b, left) and free slip channels (b, right). For
symmetry reasons, only half of the system is shown, cf. also [6].

For the 3D system depicted in Fig. 1(c), the situation is much more complex, since in 3D
there are no completely blocked paths available any more. Here, dislocations can move around
inclusions, which can be described by the Orowan mechanism. This results in a hardening
behavior, which is mainly controlled by the free space between inclusions. Fig. 3(a) shows the
stress-strain curves for different inclusion volume fractions compared to DDD-results from [7].
It can be seen that although the yield point is not exactly comparable, which is supposedly
due to the different initial configurations of density in DDD and the continuum simulation,
the increase in hardening due to a smaller distance between inclusions can be reproduced by
the continuum simulation. Fig. 3(b) shows the plastic slip in the system with 20% volume

(a) (b) (c)

Figure 3. stress-strain curves for inclusion volume fractions of 5, 20 and 45 % compared with DDD-data
from [7] (a), contourplot of the plastic slip distribution summarized over all slip systems for 20% vol. fraction
(b) and stress distribution showing stress concentrations at and between inclusions for 20% vol. fraction (c).



fraction plotted normal to the z-axis and summarized over all 12 slip systems. It can be seen
that most dislocation activity takes place in unblocked areas. The inhibition of plastic slip
between inclusions resulting in a strongly inhomogeneous plastic slip distribution is to some
extent induced by an inhomogeneous elastic stress in the matrix due to transversal loading,
but also due to back-stress effects induced by pile-ups. Thus a higher stress is needed to push
dislocations through the closing channels. This means that the system cannot fully relax the
external load in those areas, which then results in higher stresses, see Fig. 3(c).

Discussion and Conclusions

The material behavior of simplified Al-SiC composite structures have been analyzed in 2D and
3D concerning localized plastic slip and stress concentrations. Comparisons with respective
DDD-results show good agreement and demonstrates, that the continuum simulation is able to
capture key effects observed in discrete simulations. In the 2D system localized plastic slip due
to stress concentrations at inclusion corners have been observed. This indicates high dislocation
activity and therefore high induced stresses by dislocation pile-ups which yields critical regions
concerning failure in metal matrix composites. In the 3D system, the spacing between inclusions
has been identified as the key influence to hardening. Here, the inhibition of plastic slip due to
the narrow channels results in strong stress gradients inducing critical areas for material failure.
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