
Proceedings of the 7th GACM Colloquium on Computational Mechanics
for Young Scientists from Academia and Industry

October 11-13, 2017 in Stuttgart, Germany

A variational and computational framework for
large strain electromechanics based on convex
multi-variable energies

Rogelio Ortigosa1* and Antonio J. Gil1

Micro Abstract
This paper presents a variational and computational framework for nonlinear electromechanics based
on a new convex multi-variable definition of the internal energy. This ensures: a) the material stability
of the governing equations (ellipticity) and b) allows to introduce new multi-field variational principles
which open up interesting possibilities in terms of using various interpolation spaces for the different
fields, leading to enhanced type formulations.
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Introduction

Electro Active Polymers (EAPs) have been identified as ideal candidates for the fabrication of soft
robots due to their ability to undergo highly complex stretching, bending and twisting actuation
when subjected to electric stimuli. As an example, Dielectric Elastomer EAPs have shown
impressive nonlinear electrically-induced strains of around 100%. Moreover, recent research
on Dielectric Elastomer VHB4910 [2] has reported unprecedented area expansions of 1962%,
opening up a wealth of new design possibilities in a previously unthinkable giant actuation
range. The tremendous potential of EAPs has attracted the interest of eminent scientists in the
field of computational mechanics (Steinmann [7], Castañeda [6], and many others). Robustness,
reliability, efficiency and accuracy are the four crucial characteristics sought in a computer
program. Unfortunately, even state-of-the-art computer models fail to realistically. The reason
for this pitfall is not necessarily the algorithm per se. It is far more fundamental: it is due to
the constitutive model upon which the algorithm is based.

A prototypical example, widely available in the literature [6], will be used to illustrate this. A
standard set up used for the material characterisation of isotropic EAP films via laboratory
experiments (see Figure 1a) is that where an imposed out-of-plane (to the film) electric field
actuates an in-plane uniform expansion and an out-of-plane thinning of the film. Laboratory
data is then used to calibrate the constitutive model response curve. The blue curve in Figure 1b
displays this response for a constitutive model widely used in the literature. A careful analysis
(requiring computing the acoustic wave speeds of the model), illustrated in Figure 1b, identifies
in red the regions in which the model fails. Specifically, for any combination of electric field (E0)
and electrically induced stretch (λ) located inside the red region, the model becomes ill-posed or
non-elliptic [6], leading inevitably to catastrophic consequences from the numerical standpoint,
characterised by mesh-biased results and areas of unphysical zero thickness (see Figure 1c).
This is the reason why, in the context of EAPs, computer models cannot be reliably [6] used
beyond moderate actuation scenarios without risking physically impossible results. A new
methodological approach for the development of constitutive models which are well-posed ab
initio for the entire range of deformations and electric fields is presented in this paper.
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Figure 1. (a) Material characterisation of EAP VHB4910; (b) Response curve (in blue) and stability analysis
of widely used constitutive model for the standard experimental set up described; (c) Development of localised
deformations in unrealistic zero thickness shear bands in the simulation of a piezoelectric EAP material.

1 Nonlinear continuum electromechanics: multi-variable convexity

The set of equations governing the physics of EAPs, namely conservation of linear momentum
and the Gauss’s law [7], can be mathematically stated as,

DIVP + f0 = 0; DIVD0 − ρ0 = 0, (1)

where P is the first Piola-Kirchhoff stress tensor, f0, the Lagrangian body force vector, D0, the
Lagrangian electric displacement field and ρ0, the electric charge per unit volume. Rotational
equilibrium dictates that FTP = PFT , where F represents the deformation gradient tensor, and
the Faraday’s law can be written as E0 = −∇0φ, with E0 the Lagrangian electric field and φ
the electric potential. The internal energy density e, encapsulating the constitutive information
necessary to close the system of governing equations in (1), is defined as e = e(F,D0). Recently,
the concept of multi-variable convexity has been introduced in References [1, 3–5], postulated as

e (∇0x,D0) = W (F,H, J,D0,d) ; d = FD0, (2)

where W represents a convex multi-variable functional in terms of its extended set of arguments
V = {F,H, J,D0,d}, with {H, J} the co-factor and the Jacobian of F, respectively. The set
of work conjugates to V is defined as ΣV = {ΣF,ΣH,ΣJ ,ΣD0 ,Σd}, with ΣA = ∂W

∂A , for any
A ∈ V . Both sets V and ΣV enable a new representation of the first Piola-Kirchhoff stress tensor
and the Lagrangian electric field in terms of the elements of both sets as

P = ΣF + ΣH F + ΣJH + Σd ⊗D0; E0 = ΣD0 + FTΣd. (3)

Crucially, the definition of multi-variable convexity in (2) satisfies ab initio the ellipticity
condition for the entire range of deformations and electric fields.

2 Finite Element implementation and numerical results

Multi-variable convexity guarantees a one-to-one and invertible relationship between the sets
V and ΣV [1]. Therefore, alternative energy functionals established via appropriate Legendre
transforms applied to the internal energy W (V) can be defined, including the Gibb’s energy
Υ(Σm

V ,Σ
e
V), the Enthalpy Ψ(Σm

V ,Ve) and the Helmholtz’s energy Φ(Vm,ΣVe), with Vm =
{F,H, J}, Ve = {D0,d}, Σm

V = {ΣF,ΣH,ΣJ} and Σe
V = {ΣD0 ,Σd}. This opens up the

possibility for the definition of new Hu-Wahizu mixed variational principles in terms of the
multiple energy functionals mentioned, namely {W,Υ,Ψ,Φ}, which can overcome classical
drawbacks of traditional Finite Element displacement-potential based formulations, i.e, shear
locking, volumetric locking in incompressible scenarios, etc. An example of a Hu-Washizu mixed
variational principle presented in [1, 4, 5] in terms of W (V) is

ΠW (x,Vm,Σm
V , ϕ,Ve,Σd) =

∫
V
W (V) dV +

∫
V

D0 · ∇0ϕdV +

∫
V

ΣF : (Fx − F) dV

+

∫
V

[ΣH : (Hx −H) + ΣJ(Jx − J) + Σd · (FxD0 − d)] dV −Πext(x, ϕ),

(4)



where {Fx,Hx, Jx} denote the geometrically compatible strain measures and Πext the external
work contribution. Figure 2 includes a series of numerical examples which prove the robustness
and applicability of the above formulation. Specifically, Figures 2a-2c show the electrically
induced torsional deformation pattern on an incompressible EAP. Figures 2d and 2e show
different electrically induced bending actuation patterns of EAPs. Finally, 2f displays the giant
electrically induced deformations on an EAP obtained after the snap-through instability.

(a) (b) (c)

(d) (e) (f)

Figure 2. (a)-(c) Electrically induced torsional actuation. (d)-(e) Various electrically induced bending
actuation applications. (f) Giant electrically induced deformations on helicoidal actuator.

3 Material characterisation via convex multi-variable constitutive models

For the experimental set up described in Section , a Convex Multi-Variable (CMV) and a
non-CMV constitutive models, Wel,1 and Wel,2 respectively, defined as

Wel,1 = µ1IIF + µ2IIH +
1

2ε1
IId + µe

(
II2F +

2

µeεe
IIFIId +

1

µ2eε
2
e

IId

)
+ f(J);

Wel,2 = µ̃1IIF + µ̃2IIH +
1

2ε̃1
IId +

2

ε̃e
IIFIId +

1

2ε̃2
IID0 + f(J),

(5)

will be considered, with IIA = A : A for second order tensors and IIA = A ·A for vectors. Both
models can capture intrinsic effects of EAPs such as electristriction, i.e. the dependence of the
spatial electric permittivity ε upon the deformation. Careful selection of electrostrictive material
parameters {fe, f̃e}, defined as {fe = ε1

ε , f̃e = ε̃1
ε }, can help replicating the electrostrictive

behaviour of a simpler model proposed by Zhao et al. [8] (see Figure 3a). The material
parameters for the CMV model have been selected to replicate the response of the non-CMV
model (see Figure 3d). However, a careful analysis, requiring the computation of the minors of
the generalised electro-mechanical acoustic tensor (related to the wave speeds in the material),
shows that the non-CMV model (Figures 3b-3c) becomes non-elliptic. This is represented by the
flat regions in Figure 3c, associated with unphysical imaginary wave speeds. The latter coincides
with the loss of ellipticity, represented in Figure 1b by the red area. On the contrary, the CMV
model remains elliptic for the entire range of the experimental set up (Figures 3e-3f ).

Conclusions

This paper has presented a computational framework for nonlinear electromechanics based on
the concept of multi-variable convexity introduced in [1,3–5]. Convex multi-variable definition of
the internal energy functional ensures the ellipticity and, hence, the existence of real wave speeds
within the material. In addition, from the computational implementation standpoint, multi-
variable convexity has enabled the definition of new interesting mixed Hu-Washizu formulations.
In forthcoming publications, unexplored energy relaxation techniques based on the computation
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Figure 3. (a) Electrostriction in Wel,1 and Wel,2 in (5); (d) response curve for Wel,1 and Wel,2; (b)-(c) and
(e-f) minors of the acoustic tensor for Wel,2 and Wel,1, respectively, for different stages of the experiment.

of CMV envelopes of (widely used) non-CMV energy functionals will be pursued, as a means to
regularise the a priori ill-posed response of the latter.

References

[1] A. Gil and R. Ortigosa. A new framework for large strain electromechanics based on
convex multi-variable strain energies: Variational formulation and material characterisation.
Computer Methods in Applied Mechanics and Engineering, Vol. 302:p. 293–328, 2016.

[2] T. Li, C. Keplinger, R. Baumgartner, S. Bauer, W. Wang, and Z. Suo. Giant voltage-induced
deformation in dielectric elastomers near the verge of snap-through instability. Journal of
the Mechanics and Physics of Solids, Vol. 61:p. 611–628, 2013.

[3] R. Ortigosa and A. Gil. A computational framework for incompressible electromechanics
based on convex multi-variable strain energies for geometrically exact shell theory. Computer
Methods in Applied Mechanics and Engineering, Vol. 792:p. 792–816, 2016.

[4] R. Ortigosa and A. Gil. A new framework for large strain electromechanics based on convex
multi-variable strain energies: Conservation laws and hyperbolicity with extension to electro-
magneto-mechanics. Computer Methods in Applied Mechanics and Engineering, Vol. 309:p.
202–242, 2016.

[5] R. Ortigosa and A. Gil. A new framework for large strain electromechanics based on
convex multi-variable strain energies: Finite element discretisation and computational
implementation. Computer Methods in Applied Mechanics and Engineering, Vol. 302:p.
329–360, 2016.

[6] M. Siboni and P. Casta neda. Fiber-constrained, dielectric-elastomer composites: Finite-
strain response and stability analysis. Journal of the Mechanics and Physics of Solids, Vol.
68:p. 211–238, 2014.

[7] D. Vu, P. Steinmann, and G. Possart. Numerical modelling of non-linear electroelasticity.
Journal for Numerical Methods in Engineering, Vol. 70:p. 685–704, 2007.

[8] X. Zhao and Z. Suo. Electrostriction in elastic dielectrics undergoing large deformation.
Journal of Applied Physics, Vol. 68:p. 123530, 2008.


