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Micro Abstract
Modelling the neuromusclular system is challenging due to its high compexlity and variability.
Formulating models that account for a realistic biophysical motivated activation process leads to
computational expensive multi-scale simulations, in which the availible computing environment limits
model detail and model size. We aim to push these boundaries by using massively parallel HPC
clusters and efficient algorithms.
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Introduction

Skeletal muscle contraction and force production is caused by a complex interplay of a large
set of muscle fibres. Therefor muscle fibres are activated (frequency coded signals) by motor
neurons, that integrate signals from the central nervous system and sensory receptors. Due to
the huge number of possible stimulation patterns, the neuromuscular system is able to perform
various, partly contradictory tasks (e.g., lifting heavy weights and peforming brain surgery).
Even though the main functional principles of individual muscle components are well understood,
it is challenging to experimentally analyse skeletal muscles control principles and function
in-vivo, due to the complex interplay of multiple functional units. Detailed biophysical models of
skeletal muscle tissue can overcome these limitations, because it is possible to perform numerical
experiments in a controlled environment. However, from a modelling perspective, the high
variability of the neuromuscular system is challenging, since the complex, adaptable behaviour
of skeletal muscles can not be reproduced by a simple lumped model. Formulating models that
account for a realistic biophysical motivated activation process leads to computational expensive
multi-scale simulations, what limits the applicability of such models. In order to overcome these
limitations, we want to optimise our multi-scale skeletal muscle model [2–4] for the use on HPC
clusters by using the open source software library OpenCMISS [1] for modelling and simulating
different biomedical engineering applications. Further, specialised visualisation tools need to be
developed, that are able to handle the generated data efficiently. Within that contribution we
want to demonstrate our multidisciplinary approach how we optimise our multi-scale skeletal
model [2–4] for the use on HPC clusters.

The multi-scale skeletal muscle model

Anatomically, skeletal muscles are constructed in a hierarchical structure. Starting at the
micro-scale, the sarcomere is the smallest functional unit of the muscle, consisting of a periodical
structure of thin actin and thick myosin filaments. Multiple sarcomeres (in series and in parallel)



form a muscle fibre and multiple fibres connected by extracellular matrix form fasciles, that
determine the properties of the muscle. Muscle fibres are innervated from lower motor neurons,
leading to the propagation of action potentials along the muscle fibres. When activated through
an action potential, actin filaments and myosin filaments can form cross-bridges stimulated by
calcium as an second messenger. The repeated process of cross-bridge binding, power-stroke and
detachment leading to active contraction and force generation is known as cross-bridge cycle.

Figure 1. Schematic overview of the multi-scale skeletal muscle modelling framework [2–4].

Due to skeletal muscles hierarchical structure, the macroscopic tissue properties can be derived
from the muscles’ cellular behaviour. Therefore, we use a multi-scale modelling approach, linking
the macroscopic tissue properties to a biophysical description of the muscle cell. We use a
continuum-mechanical modelling approach based on the theory of finite elasticity to simulate
the macroscopic deformations and stresses of skeletal muscle tissue. The electrophysiological
properties of muscle fibres can be simulated using the monodomain model. In the multi-scale
model, the monodomain model, which is a reaction-diffusion equation [5], is solved on a set of
representative computational muscle fibres that are embedded into the three-dimensional muscle
geometry.

The monodomain model can be derived from Maxwell-equations and is based on the homogeneity
assumption, that intracellular and extracellular space occupy the same physical space and are
seperated by the muscle fibre membrane (sarcolemma). The monodomain model assumes that
intracellular and extracellular space are electrically coupled through ion channels and capacitive
properties of the membrane. We use a detailed biophysical sub-cellular model of the muscle
fibre membrane, intracellular calcium dynamics and cross-bridge cycling [6] (system of ordinary
differential equations). The mondomain model can be summarised by the following set of
equations:
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therein Vm is the trans-membrane potential, Am is the fibre surface-to-volume ration, Cm is the
capacity of the sarcolemma, Iion the ionic current flowing through the ion channels, y is a vector
containing the state variables of the cell model, Gy summarizes the right-hand-side of the ODE
system, t is the time and s denotes the spatial coordinate.

The governing equation for the continuum-mechanical problem is the balance of linear momentum.
When neglecting inertia forces and body forces, the balance of linear momentum reduces to the
quasi-static problem

divP = 0 , (2)

where P denotes the first Piola-Kirchhoff stress tensor. It is assumed, that the overall mechanical
behaviour of skeletal muscle tissue can be obtained by superposition, leading to an additive
split of the stress-tensor into a passive contribution P passive and an active contribution P active.
Further is is assumed that skeletal muscle tissue is incompressible, i.e. detF = 1. The resulting
first Piola-Kirchhoff stress tensor reads

P (F ,M, γ) = P passive(F ,M) + P active(F ,M, γ) − pF−T , (3)



where F is the deformation gradient tensor, M = a0⊗a0 is a structure tensor, a0 is the muscle
fibre direction, γ is a lumped activation parameter, which is calculated by the sub-cellular
model [6] and p is a Lagrangean multiplier, entering the equation to satisfy the incompressibility
constraint.

State of the art and challenges

Since the different sub-models show significant differences in the characteristic time and length
scales, the sub-models are solved by using different discretisation techniques.

The continuum-mechanical skeletal muscle model is solved by applying the finite element method.
and the muscle geometry is represented using triquadratic/trilinear Lagrange basis functions,
i.e., Taylor-Hood elements. Within this model, we assume that the computational muscle
fibres are represented by much finer one-dimensional finite-element meshes, that are embedded
into the three-dimensional finite-element mesh. Further a first-order operator splitting method
(Godunov splitting) is applied to solve the monodomain-equation, separating the diffusion term
from the non-linear reaction term. An explicit Euler-method is used to integrate the ODE
system describing the reaction term and the one-dimensional diffusion problem is solved by a
GMRES solver. In order to exchange variables between the different sub-models, the macroscopic
deformations are interpolated and evaluated at the node points of the one-dimensional fibre
mesh. Further the activation parameter γ is homogenised (TH : γ → γ̄) and projected on the
Gauss-points of the three-dimensional finite-element mesh.

Figure 2. Evaluation of the runtime for the different sub-models. The setting contains a constant number of
2 x 2 x 2 elements in the 3D model and variable number of elements in the 1D model.

Before a computational framework can be run on a supercomputer, it’s efficiency needs to be
analysed as only efficient code should be ported. The analysis is done by investigating computa-
tional bottlenecks. Therefore the runtimes for the different submodels are first investigated. The
evaluation of the runtime show (see Figure 2) some of the characteristics of the computational
model:

1. The overall simulation time is dominated by the solver of the sub-cellular ODE model
(0D model). This is due to the characteristics of the temporal action potential evolution,
showing a steep rise when the membrane depolarise, i.e., solving a stiff ODE with a



first-order forward Euler method. Consequently small timesteps are needed to simulate
the sub-cellular behaviour.

2. The runtime of the muscle fibre-model increase nearly linear with the problem size.

3. The computational costs for solving the three-dimensional, continuum-mechanical model
and for the exchange of variables between the sub-models are negligible compared to the
computational costs to solve the one-dimensional muscle fibre model. This is due to the
relative coarse finite elment mesh for the continuum-mechanical skeletal muscle model.

Scaleability and numerical improvements

In a weak-scaling study (see Figure 3), i.e. the problem size was linearly increased with the
number of processes, we checked the parallel performance of the computational model. By
exploiting the model assumption that individual muscle fibres can be considered to behave
electrical independent from each other, the multi-scale skeletal muscle model shows promising
results for a weak-scaling test. The runtime for the ODE solvers, which dominate the overall
runtime, is almost constant when increasing the problem size. However the solver for the
one-dimensional diffusion problem shows potential for optimisation with respect to parallel
simulation execution.

Figure 3. Weak scaling study on multiple nodes. The problem size is scaled equally to the number of
processes while preserving the approximate shape of the physical domain. The solid lines are for a domain
decomposition strategy with preferably cube shaped subdomains, the dashed lines correspond to a domain
decomposition with elongated subdomains.

Further, as a result of the runtime evaluation (see Figure 2), we optimised the numerical solution
strategy of the muscle fibre model, by replacing the first-order Godunov splitting method with a
second order Strang splitting method and replace the GMRES solver for the diffusion problem
with more efficient solution method, e.g., a Conjugate Gradient (CG) method.

Conclusion and Outlook

Large-scale simulations accounting for realistic muscle geometries, the electrophysiological
properties of skeletal muscle tissue and a realistic activation process, can contribute to a better



understanding the neuromuscular system and generate benchmark results for simplified modelling
approaches. Using the open-source software library OpenCMISS, we demonstrate the general
suitability of our multi-scale skeletal muscle model for parallel simulations on HPC clusters, i.e.,
making large-scale simulations of the neuromuscular system feasible.
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(High Performance Computing II).

References

[1] C. P. Bradley, A. Bowery, R. Britten, V. Budelmann, O. Camara, R. Christie, A. Cookson,
A. F. Frangi, T. Gamage, T. Heidlauf, S. Krittian, D. Ladd, C. Little, K. Mithraratne,
M. Nash, D. Nickerson, P. Nielsen, O. Nordbø, S. Omholt, A. Pashaei, D. Paterson, V. Ra-
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