
Proceedings of the 7th GACM Colloquium on Computational Mechanics
for Young Scientists from Academia and Industry

October 11-13, 2017 in Stuttgart, Germany

Load-balance strategies for CFD-codes on HPC
systems

Philipp Offenhäuser1*

Micro Abstract
Today’s HPC systems generate their performance by facilitating hundreds of thousands of cores. In
order to use this computing power efficiently, the computational effort must be distributed evenly
across all cores. Techniques for distributing the simulation initially are well-known. Based on numerical
and physical phenomena additional computational effort may occur locally, at run-time. Techniques
are presented which recognize these additional loads and redistribute the simulation evenly.

1Numerical Methods & Libraries, High Performance Computing Center Stuttgart, Stuttgart, Germany

*Corresponding author: offenhaeuser@hlrs.de

Introduction

Numerical simulation is an indispensable tool in science and research. In the last decades it
has strongly profited from the continuing increase of available computing power. However,
clock speeds and computing powers of individual processor cores no longer see the significant
improvements that made computers more and more powerful in the past. Instead, current
supercomputers generate their increase in performance by facilitating more and more cores in
parallel, with modern systems already having hundreds of thousands of cores [10].

Computational fluid dynamics (CFD) is one of the research areas that profits most strongly from
fast computers. A number of CFD algorithms specifically designed for massive parallel hardware
was developed and implemented recently [5, 7]. To use the performance of massive parallel
HPC-hardware the communication effort of such parallel CFD-applications has to be small
compared to the computational cost. Additionally, the computation must be distributed evenly
across all CPU-cores. Over the years very efficient communication patterns have been developed,
which enable an overlap of communication and computation [2]. Also, a variety of partitioning
algorithms that distribute the work on the processors is now available, such as methods based
on space-filling curves [4] or graph based methods [1]. The choice of a partitioning strategy
depends strongly on the use-case [11] and for different classes of use-cases different techniques
for the initial distribution of computation effort are well-known. The parallel CFD-algorithms
together with efficient communication patterns and efficient partitioning algorithms led to very
powerful CFD-applications [3, 5, 7].

In a next step, the CFD-applications have been extended to much more complex problems like
transient multi-scale and multi-phase-flow problems. To simulate such problems, the numeric
has been expanded to stabilize the basic numerical approach and cover all physical phenomena
of interest. However, such simulations suffer from the fact that the treatment of certain physical
phenomena, such as shockwaves is numerically costly. At the same time, the occurence of such
phenomena is hard to predict both concerning the precise location within the simulated volume
and concerning the exact time. These irregularities cause a mismatch of computational effort for
individual MPI-processes. These load imbalances lead to massive performance decreases and
also have a negative impact on communication hidding.



1 Numerical Background

As an example for a powerful numerical method for CFD with time dependent additional
computational effort we use the discontinuous Galerkin spectral element method (DG SEM). At
this point only a short overview is given, for further reading we refer to [7]. Starting point of
DG SEM are the compressible Navier-Stokes equations expressed in conservative form

ut(x) + ∇x · F (u(x),∇xu(x)) = 0 ∀x ∈ Ω (1)

where F contains the physical fluxes, Ω is the computational domain, and u is a vector containing
the conservative variables. The simulation domain is discretized with hexahedral grid cells.
For the actual computation, the grid cells are mapped to a reference element E = [−1, 1]3

with coordinates ξ = (ξ1, ξ2, ξ3)T . To derive the discontinuous Galerkin (DG) formulation, the
transformed conservative law is multiplied with a test function Φ. The solution in each reference
element is approximated by tensor products of Lagrangian polynomials of degree N .

DG schemes are a hybrid of Finite Element schemes and Finite Volume schemes. The solution is
approximated by an element-local polynomial basis and the solution is discontinues over element
boundaries. Adjacent elements are coupled by fluxes through their interfaces. A disadvantage of
height order methods, like the DG SEM, is the introduced instabilities by shock waves traveling
through grid cells. If a jump in a grid cell has to be resolved, the high order polynomial in
the coarse grid cell generates spurious oscillations. To circumvent this problem Sonntag and
Munz [9] introduced an inherent refinement of the discontinuous Galerkin elements into several
finite volume cells with a lower order approximation without changing the number of degrees of
freedom or the general data structure [9]. To detect the instabilities in the solution they used
the so-called Persson indicator [8]. With this approach they overcome the problem with the
instabilities but locally generate additional computational effort because a finite volume subscell
is more computation intensive then a DG-Element.

2 Load balancing methodology

In the initial domain decomposition it is not possible to take care of additional local computation
induced by transient physical phenomena like traveling shockwaves. During run-time the
computation load of the MPI-processes vary. In figure 1 details of two traces of a time-step of a
CFD-application is shown. Figure 1a shows a well balanced time step. The ratio of MPI-functions
is small and the communication is overlapped by the computation very well. In figure 1b a
later time-step is shown. In some MPI-Processes the ratio of time in MPI-functions is much
higher then in figure 1a. The MPI-processes with low computational effort have to wait for
MPI-processes with huge computational effort. The whole performance of the CFD-application
suffer in terms of the load imbalance between the MPI-processes.

To overcome this problem it is necessary to do a redistribution of the computation effort during
run-time to regain a well balanced application. The load balancing process can be divided in
two main tasks.

First the optimization problem of calculating the new balanced distribution of the elements
over all processes. Second the exchange of the elements between MPI-processes with high load
and processes with low load. The challenges in the design of a dynamic load balancing are
the requirement for a very low overhead due to the redistribution process and the complicated
communication pattern that arises during run-time and depends on the current state of the
simulation.

An approach for load balancing based on a space-filling Hilbert curve [6] is investigated. The
space-filling curve maps the three dimensional domain decomposition problem to a much simpler
one dimensional problem. An optimization algorithm for distributing the computation effort over
all MPI-processes, based on the actual computational costs of the elements was developed. The



(a) A well balanced generic test-case

(b) A generic test-case with load imbalance

Figure 1. Detail of a tracing-result of one time-step of a CFD application for a generic test-case on 384
cpu-cores. In 1a a given time-step without load imbalances and in 1b a given time-step with huge load
imbalance (green is computation and red are MPI-functions)

one-dimensional structure of the mapped problem reduces the communication effort for calculating
the element distribution and also the communication effort for the data exchange between over-
and under-loaded MPI-processes. To avoid an expensive all-to-all communication pattern the
introduced load balancing methodology makes use of the MPI 3.0 shared memory window. The
developed communication pattern reduces the communication only to communication between
nodes and not communication between all MPI-processes.

3 Results

Figure 2 shows the normed load distribution before and after the load balancing. In figure 2a
a huge number of the MPI-processes are under-loaded and a few of the MPI-processes are
over-loaded. After running the optimization algorithm the load over all MPI-processes is nearly
equal as you can see in figure 2b. The new element distribution will eliminate the performance
penalty which occurs because of the additional local computation effort.

For a gas-injector with a huge load imbalance, simulations without and with dynamic load
balancing were performed on the Cray CX40 (Hazel Hen) at the High Performance Computing
Center Stuttgart on 1,200 cores. The dynamic load balancing was executed every 1,000th time
step. Figures 3a to 3c show that for the simulation with dynamic load balancing, the domain
decomposition chances over the run-time, depending on the additional local computation effort.
The dynamic load balancing helps to reduce the run-time significantly.

Conclusions

Today’s HPC systems generate their performance by facilitating hundreds of thousands of cores.
To make use of such highly parallel architectures special CFD-algorithms have been developed
and implemented in a variety of CFD-applications. CFD-applications that simulate complex
transient problems suffer from locally occurring additional computational effort caused by
physical phenomena that are numerically costly. The locally occurring additional computational
effort engenders load imbalances between MPI-Processes and decreases the parallel efficiency of
CFD-applications. The problems which occur due to the load imbalance have been described
and a methodology for dynamic load balancing of CFD-applications has been presented.

First results show how dynamic load balancing can increase the parallel performance. This
work shows the necessity of dynamic load balancing for numeric methods which occurring local



0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

10 20 30 40 50 60 70 80 90

lo
ad

/
av

er
ag

e
lo

ad

core id

(a) Load distribution over 96
MPI-processes for a generic
test-case before load balancing

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

10 20 30 40 50 60 70 80 90

lo
ad

/
av

er
ag

e
lo

ad

core id

(b) Load distribution over 96
MPI-processes for a generic
test-case avter load balancing

Figure 2. Load distribution over 96 MPI-processes for a generic test-case before (figure 2a) and after
(figure 2b) the load balancing

(a) Domain
decomposition for the
MPI-processes 495 to
505 at timestep T0

(b) Domain
decomposition for the
MPI-processes 495 to
505 at timestep T1

(c) Domain
decomposition for the
MPI-processes 495 to
505 at timestep T2

Figure 3. Visualization of the domain decomposition for the MPI-processes 495 to 505 of a gas injector for
three different time steps. The simulation was performed on 1,200 cores

additional computational effort. In future, the problem of load balancing will increase with the
increasing number of cores in new supercomputers. For this reason, techniques for dynamic load
balancing must be further investigated and developed.

References

[1] Family of graph and hypergraph partitioning software.
http://glaros.dtc.umn.edu/gkhome/views/metis. Accessed: 2017-09-08.

[2] C. Altmann, A. D. Beck, F. Hindenlang, M. Staudenmaier, G. J. Gassner, and C.-D. Munz.
An Efficient High Performance Parallelization of a Discontinuous Galerkin Spectral Element
Method, pages 37–47. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[3] M. Atak, A. Beck, T. Bolemann, D. Flad, H. Frank, and C.-D. Munz. High Fidelity Scale-
Resolving Computational Fluid Dynamics Using the High Order Discontinuous Galerkin
Spectral Element Method, pages 511–530. Springer International Publishing, 2016.

[4] M. Bader. Space-Filling Curves: An Introduction with Applications in Scientific Computing.
Springer Publishing Company, Incorporated, 2012.

[5] M. O. Cetin, A. Pogorelov, A. Lintermann, H.-J. Cheng, M. Meinke, and W. Schröder.
Large-Scale Simulations of a Non-generic Helicopter Engine Nozzle and a Ducted Axial Fan,
pages 389–405. Springer International Publishing, Cham, 2016.

[6] D. Hilbert. Über die stetige abbildung einer linie auf ein flächenstück. Mathematische
Annalen, (38):459–460, 1891.



[7] F. Hindenlang, G. J. Gassner, C. Altmann, A. Beck, M. Staudenmaier, and C.-D. Munz.
Explicit discontinuous galerkin methods for unsteady problems. Computers & Fluids,
61:86–93, 2012.

[8] P.-O. Persson and J. Peraire. chapter Sub-Cell Shock Capturing for Discontinuous Galerkin
Methods. Aerospace Sciences Meetings. American Institute of Aeronautics and Astronautics,
Jan 2006. 0.

[9] M. Sonntag and C.-D. Munz. Shock Capturing for Discontinuous Galerkin Methods using
Finite Volume Subcells, pages 945–953. Springer International Publishing, Cham, 2014.

[10] E. Strohmaier, J. Dongarra, H. Simon, and M. Meuer. Top500 list - june 2017.
https://www.top500.org/lists/2017/06/. Accessed: 2017-08-29.

[11] J. D. Teresco, K. D. Devine, and J. E. Flaherty. Partitioning and dynamic load balancing
for the numerical solution of partial differential equations. In Numerical solution of partial
differential equations on parallel computers, pages 55–88. Springer, 2006.


