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Micro Abstract
For the design of frame structures in civil engineering we are interested in an approach to combine
topology and shape optimization. We use a phase field model to generate topology as design concept
first. However, it is not possible to estimate the overall fitness of obtained topologies concerning more
complex criteria required in civil engineering. Therefore, as a second step, shape optimization with
metaheuristic methods considering the normative constraints is performed.
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Introduction

As the slogan ’form follows function’ states, the design of a load bearing structure should be
based on its purpose, which is to balance loadings. An optimized design is ruled by an efficient
flow of forces and complies with all necessary standards. However, most real-world problems
of optimization cannot be solved analytically. Thus, numerical methods are of great practical
importance. The first step in designing a structure is to define a topology. Since the flow of
forces can be found within elasticity theory, it is not essential to account for fracture or plasticity
first. However, stress limitations should be considered in a second step, when the topology is
found and simplified, if desired. With this, the shape of this topology is optimized with another
objective function, where normative side conditions are taken into account.

1 Principle of the two step optimization

In our opinion, the most neutral conceptual design for load bearing structures is a homogeneously
filled region B of material. Then, on the basis of phase field modeling (PFM), we reduce the
filling degree of material by evolution of phases. In the second step, the final topology of the
PFM is used to set up a simplified model with single nodes and beams. The subsequent shape
optimization considers normative constraints like yield stress to determine the discrete values
of optimization parameters, e.g. the cross section of each member. Since the optimization of
framework structures with a fixed set of optimization parameters belongs to the combinatorial
problems, metaheuristic optimization methods as the Evolutionary Algorithm (EA) are used.

1.1 Topology optimization with the phase field model

Many numerical methods for topology optimization have been developed, see e.g., [3, 7], since
Bendsøe and Kikuchi [1, 2] proposed the material distribution concept instead of discrete values
for voids and material. Our approach additionally assumes that local failure is predictable by
the equivalent stress σV from the von Mises stress criterion. Nevertheless, we avoid to consider
a certain stress limit σV ≤ fy as suggested in [4, 5]. Our algorithm homogenizes σV in the
evolving structure by seeking the minimum of an energy function. The evolution is ruled by an



Allen-Cahn equation concerning ϕ, which is the phase field parameter coupling to the density
ρϕ and stiffness Cϕ of the material:

f(ϕ) =
eαϕ

eαϕ + 1
, ρϕ = fϕ ρ0 , Cϕ = f(ϕ)C0. (1)

Here ρ0 and C0 is the density and the elasticity matrix of the employed material. The model
evolves voids since the favorable states for ϕ are given by a well potential with minimal energy at
ϕ = −1 and ϕ = 1. Regions with Cϕ → 0 are denominated voids, whereas regions with Cϕ → C0

are filled with material. The complexity of the evolving structure is controlled by two main
parameters: the thickness of the diffuse interface zone between voids/material and the amount
of external work on γϕ during the process. It is comparable to external work for the injection
or extraction of material. Since γ(σV ) drives the evolution process, it can be interpreted as
”pressure” to adjust the material density in B. We assume the total energy of the design domain
B given by inner energy Ψ(ε, ϕ,Grad[ϕ]), and external work, reading

Π(u, ϕ,Grad[ϕ]) =

∫
B

Ψ(ε(u), ϕ,Grad[ϕ]) dV−
∫
B

(ρϕ b · u + γ ϕ) dV−
∫
∂B

(t · u + y ϕ) dA.

(2)

With b we denote external net forces, such that ρϕ b is a body force, e.g., to account for the
weight of material.

1.2 Shape Optimization with an Evolutionary Algorithm

This optimization method uses agents to scan the search area for feasible solutions and divides
the shape optimization process into single steps called generations. The algorithm usually
succeeds in finding acceptable solutions even for complex fitness landscapes and increased
number of optimization parameters. The process starts from a population of randomly generated
individuals, in which discrete values of the optimization parameters represent the genome of
individuals. The fitness of individuals of each generation is evaluated. The objective function
rating individuals is easy to extend and can account for arbitrary constraints.
Individuals with high fitness have increased probability to become the basis for new individuals
of the next generation. The reproduction mechanisms of the EA are inspired by the mechanisms
of evolution: cloning, mutation, recombination, and selection. Mutation is used to avoid
convergence into local minima. Cloning preserves individuals with already good fitness. By
recombining the genome of different individuals and filtering the resulting individuals with bad
fitness per generation in the selection process, convergence to a solution is guaranteed. In our
EA three parameter control the convergence rate of the algorithm: the number of individuals per
generation, the reproduction rate and the ratio of mutation to recombination. These parameters
influence computational time and quality of the optimization process.
We found that the simultaneous optimization of nodal coordinates and cross sections profits
by calculation with a low number of individuals but a high reproduction ratio of 1 : 20 per
generation. An adaptive mutation to recombination rate helps to scan the search area widely at
the beginning of the optimization. However, it reduces its spread in the final stage, when good
individuals have already been found.

2 Example with systematic investigation of topologies

In [6] we have discussed a single-span beam to explain the proposed workflow. Here we consider
the two-span continuous beam of Fig. 1a, which is statically indetermined. The optimization of
such systems is more challenging: reaction forces conduct the shape optimization, which itself
yields the stiffness of members. However, the stiffness of members conduct the reaction forces in
the system. Thus, the overall process is recursive.
Our computational model in Fig. 1b notes symmetry. As design space B we choose a rectangular
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Figure 1. a) Full system with loading F = 36.5 kN . b) Symmetric system and design space B. c) Bending
moment in case of EI = const.

with dimensions L = 600 cm and H = 100 cm.
First, we consider the most simple topology, which is the single beam with EI = const.
The associated bending moment is shown in Fig. 1c. Dimensioning with construction steel
(t = 1 cm, fy = 24 kN/cm2) yields 19224 cm3 of material to balance the load. Despite its
simplicity, it still provides knowledge about the load carrying characteristics of solutions with
more members. The bending moment changes its sign at x0 = 436.36 cm and subsequently the
required height of the cross section at this point reduces mathematically to zero. In other words,
it is obvious that a hinge at x0 not alter the bending moment in Fig. 1c. By introducing such a
hinge, the system becomes statically determined such that the stiffness of the beam is without
effect on the bending moment.
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Figure 2. a) - h) Optimized topological variants with rising complexity and their total material consumption.
Height of cross sections in [cm].

This allows us to verify a two-beam topology, which can be an optimized beam, where the height
is induced by the bending moment, see Fig. 2b. Therefore, the beam assimilates the bending
moment distribution as shape. It requires 12004 cm3 of material and the maximal height of the
cross section is 32.04 cm at the clamped support. However, it does not make use of the possible
effective height given by the design space B. The next level of topology is to evolve a truss
structure making use of the effective height such that the bending moments are omitted. The
cross sections of trusses are considered rectangular and each has a variable height hi.
Topologies with rising number of members are shown in Fig. 2c) - h). It is possible for the EA
to reduce the complexity of the truss structure by choosing the height h = 0 cm for members if



desired. The topology with the least material after shape optimization is shown in Fig. 2g. The
EA reduces the number of trusses and shifts coordinates such that it reduces the effective height
at x0 similar to Fig. 2b.
The structure evolved by the phase field model, see Fig. 3d, yields a hybrid topology of Fig. 2e
and Fig. 2g as solution. It also reduces the statical height at x0. However, it does not coincide
exactly with the investigated topologies of Fig 2 since it is a continuum model and does not
reproduce hinges. By using the PFM, the topology in Fig. 2g is automatically found after shape
optimization, such that for practical problems the efforts of comparing many different topologies
can be omitted.
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Figure 3. Evolution of the load bearing structure by PFM from a) - d).

3 Conclusions

We have compared different topologies with rising complexity of a statically indetermined system
by material consumption. The example has shown, that the topology yielded by the PFM serves
as a valuable basis for the subsequent shape optimization with EA such that the time to design
an optimized structure can be reduced. An interface appears here as useful tool between both
optimization steps to simplify the continuum model to a beam model with hinges, if desired.
In the second step, stress limitations of a specified material and constraints are considered to
dimension the evolved structure using relevant standards.
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