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Micro Abstract
Organic sheets consist of embedded interwoven rovings in a thermoplastic matrix. Loading
results in a finite change of local reinforcement orientations with reversible and irreversible
contributions. A constitutive model taking into account the large strain kinematics and damage
evolution is presented. Mechanism-based damage formulations in both the reinforcements and
the matrix are employed. Numerical examples demonstrate the features of the suggested material model.
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Introduction

Many composites consist of a fabric structure embedded in a matrix material. In the present
case organic sheets are considered. These are layered composites, where each layer consists of
two sets of planar interwoven rovings (weft and warp), building a twill weave (cf. Figure 1),
impregnated by a thermoplastic polypropylene matrix. The former define preferred directions
in the material due to the reinforcement. These directions are known initially, e.g. by drape
simulation or assumption. In general, the application of external mechanical loads results in a
finite change of reinforcement orientation, containing reversible and irreversible contributions
and hence yielding a differing stress-free state upon unloading. Hereby, the matrix is related to
plastic deformation processes in the matrix-dominated regions of the composite material. The
present work concentrates on the development of a computational model taking into account
the aforementioned kinematic observations. Moreover, it refers to previous works enabling the
incorporation of mechanism-based damage formulations in both the reinforcements and the
thermoplastic matrix. The presentation closes with a numerical example demonstrating the
features of the suggested material model.

1 Composite formulation

Materials with preferred directions perpendicular to each other are associated with orthotropic
symmetry. In crystal plasticity it is often assumed that the initially known preferred directions
(i.e. the crystal latices) do not change with the material directly (cf. Rice [7], Kröner and
Teodosiu [1] and Mandel [2]). In the present case of weave reinforced composites, the preferred
directions (in form of the rovings) change during loading, according to the material deformation
(cf. Figure 1). In his work, Miehe [3] states that for such cases a finite plasticity formulation
based on Gp = F pTgF p can be formulated. However, due to the occuring anisotropy, it is hardly
possible to find a sound overall formulation for plasticity and damage onset in the material. To
overcome this problem, the approach of the model presented here is to superpose two angulated
preferred directions, coupled through an isotropic matrix. Hereby, the work of Reese [6] served



as a guideline.

1.1 Material orientation and plastic intermediate configuration

In general, the initial structural tensors of a weave can be written as M i = Ai ⊗Ai for each
preferred direction i ∈ [1, 2] (cf. Figure 1(a)). Given an arbitrary deformation expressed by the

Figure 1. Change of material orientation due to deformation of weave-reinforced composite. The display of
matrix domain is omitted. Initial material orientation Ai is mapped on deformed presentation ai by the
deformation gradient F .

deformation gradient, F = F eF p, the material orientation may change and will now be aligned
with the deformed structural tensors (cf. Figure 1(b)), mi = ai ⊗ ai, where ai are the deformed
preferred directions, defined by ai = FAi. Regarding thermoplastic basic constituents, it can
be expected to observe inelastic behavior during loading. In the following it assumed that this
behavior is attributed to plastic effects in the matrix (index m), resulting in a plastic share of
the deformation gradient, F p

m. The possibility to split the deformation gradient in an elastic
and plastic share gives rise to the introduction of a plastic intermediate configuration in the
co-/contravariant domains for both metrics and stresses (cf. Figure 2).

(a) (b)

Figure 2. Schematic display of co-/contravariant domains for (a) metric and (b) stresses.

This allows in a way to seperate the plastic deformation, taking place in the matrix only, but at
the same time is fully coupled onto the overall composite motion, and purely elastic behavior of all
constituents. The normalized preferred directions Ã

n
i on the plastic intermediate configuration,

deformed by purely plastic deformation, can be denoted as

Ã
n
i =

F pAi

||F pAi||
. (1)

1.2 Calculation of material stresses and moduli

The deformation of a continuous body is described by means of the right Cauchy-Green tensor,
C = F TgF , where g is the metric tensor in the Eulerian domain. The existence of a scalar



potential

Ψ = Ψm (C,Gp, dm) +

2∑
i=1

Ψ r
i (C,Gp,Ai,Di (C)) (2)

with Ψm as the strain energy function of the matrix and Ψ r
i as the strain energy functions of

the reinforcements, is assumed. Carefully note that, while Ψm is independent of the preferred
directions, Ψ r

i takes Ai as input, hence, introducing preferred directions, since the reinforcement
structures are assumed to be initially transversely isotropic. Standard arguments yield the
second Piola-Kirchhoff formulation for the tensions in both matrix and the reinforcements

Sm = 2
∂Ψm

∂C
= Sm (C;Gp, dm) ,

Sr
i = 2

∂Ψ r
i

∂C
= Sr

i (C;Gp,Ai,Di) . (3)

Analogously, the global tangent operator on the intermediate configuration can be expressed as

Cm = 4
∂2Ψ r

i

∂C2 = Cm (C;Gp, dm) ,

Cr
i = 4

∂2Ψ r
i

∂C2 = Cr
i (C;Gp,Ai,Di) . (4)

Carefully note that stress and moduli concerning reinforcements are first calculated on the
plastic intermediate configuration (Σr

i , c̃ri ), depending on Ã
n
i , and then pulled back to the

Lagrangeian setting. The damage tensor Di in Ψ r
i takes into account a three-dimensional damage

state depending on discrete failure mechanisms within the reinforcement structures, i = 1, 2,
according to Naake et al. [5]. An elasto-viscoplastic matrix model incorporating an isotropic
damage formulation for matrix damage (dm) has been taken from Naake et al. [4]. With the
assumption of no occuring plasticity in the matrix, i.e. F p

m = 1, reference configuration and
plastic intermediate configuration will coincide. The overall second Piola-Kirchhoff stresses and
according tangent moduli can finally be computed through the following expressions

S = Sm +
2∑

i=1

Sr
i , and C = Cm +

2∑
i=1

Cr
i . (5)

2 Numerical example

The given fictitious example has the purpose to show the capability of the model to predict the
change of orientation due to the application of an external load as well as residual deformation
due to plasticity in the matrix. Damage effects have been neglected here for now. A one-layer-
weave was subjected to an external shear load, as depicted in Figure 3. In Figure 3a the internal
variables of initial material orientation is displayed in terms of Ai. Due to a deformation ū in x1-
direction the material deforms according to F , thus yielding an orientation change, ai. Figure 4a
shows the progression of the angle between the two preferred directions (γ(t) = ^(a1(t),a2(t)))
and Figure 4b the corresponding stress strain curve. The observable stiffening is caused by the
progressive approach of the reinforcements rotating towards the loading direction, represented by
decreasing values for γ(t). Subsequent unloading reveals the residual change of the orientation
due to plastic effects in the matrix.

Conclusions and outlook

In the present work the principle of superposition of single constitutive models is used to model
the overall behavior of a weave-reinforced thermoplastic composite. Instead of introducing direct



Figure 3. Schematic display of the loading path of a ±45◦ off-axis woven composite. (a) Initial state with
material orientation Ai, (b) Fully loaded state with deformed preferred directions ai, (c) Unloaded state with
resulting deformed orientation ares

i

(a) (b)

Figure 4. Display of numerical results of a ±45◦ off-axis woven composite subjected to a shear load. (a)
Progression of the inner angle of reinforcement orientation over time, γ(t) = ^(a1(t),a2(t)). (b)
Corresponding stress-strain curve.

formulations for plasticity and damage for the whole weave, this technique provides plasticity
and a particular selection of damage criteria (for the matrix and single rovings) intrinsically.
The model takes previously developed constitutive material models as an input and combines
them by only using geometrical operations. However, any constitutive model for the constituents
can be used. The presented numerical example shows that the geometrical effect of fiber rotation
can be covered by the model.

A shortcoming of the presented model is that the actual weave type of the material and the
corresponding interweaving is not respected in an entirely satisfactory way by only applying
a simple superposition. This results in the necessity to introduce geometrically caused effects
appearing in woven materials in a phenomenological manner (e.g. the locking angle, progressive
stiffening of undulated rovings, their behavior under compression and delamination between
rovings and matrix). These effects are the objective of future works and are neglected here.
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