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Micro Abstract
In this work presents a strategy to diminish the computational cost of a hierarchical (FE2) multi-scale
computational homogenization approach for fracture problems is presented. Focusing on concepts
as Reduced Order Modeling (ROM) based on the POD and optimal integration quadrature
techniques, a hyper-reduced order modeling (HPROM) method is specifically derived. This model
departs from the multi-scale framework developed in (Oliver/2015) for the numerical modeling of failure.
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Introduction

Multiscale modeling appears as an excellent potential setting to account for the physical links
between the different lower scale components, within the material (grains, particles, defects,
inclusions, etc.), and the overall large scale properties. However, this modeling concept, coined
by the scientific community some decades ago, is not yet part of the routinely engineering
analysis and design methods. Certainly, and focusing on the specific case of computational
homogenization-based multiscale techniques, they can hardly be applied beyond some simple and
academic purposes. Reasons for this arise from the multiplicative character of the algorithmic
complexity and the corresponding computational cost, for hierarchical micro/macro computations
in multiscale analyses. On the other hand, model order reduction (data compression) techniques
have become an intensive research field in the computational mechanics community, because
of the increasing interest on computational modeling of complex phenomena in large scale
multiphysics problems.

This work deals with a combination of both subjects by focusing on the reduced order modeling
of computational multiscale modeling of fracturing materials. In this work, the multiscale
framework for numerical modeling of structural fracture in heterogeneous quasi-brittle materials,
described in [2]. In this work, a number of techniques are combined to optimize the HPROM
performance of FE2 multiscale modeling algorithms for multiscale propagating fracture. They
are: (1) A domain separation strategy. The RVE is split into the regular domain (made of the
elastic matrix and possible inclusions) and the singular domain (the cohesive bands exhibiting a
softening cohesive behavior), (2) The ROM boundary problem for the RVE is formulated in an
unconventional manner i.e.: in terms of the strain fluctuations. (3) A specific Reduced Optimal
Quadrature (ROQ) is used as a key technique to obtain relevant computational cost reduction
from the ROM. The above techniques are combined to provide the proposed HPROM strategy
for the RVE, using a standard two-stage (off-line/on-line) strategy.



Generalities of FE2 method applied to multiscale fracture problems:

This approach is developed under a small strain framework, the equality of internal power at
both scales is guaranteed via Hill-Mandell Macro-Homogeneity principle. In this approach, the
macroscopic constitutive response is proven to be point-wise equivalent to an inelastic law (in
an incremental fashion) as a function of the homogenized elastic tangent tensor, Chom, and the
incremental homogenized inelastic strain rate ε̇(i) i.e.:

σ̇ = Chom : (ε̇(x)− ε̇(i)) ε̇(i) =
1

lµ
(n⊗ β̇) (1)

Where, the inelastic strain component ε̇(i) is expressed as a function of the homogenized variables
taken from the RVE, and represent the average value of the symmetric tensor product between
the strong discontinuity normal n, and the rate of displacement jump β̇ of each cohesive band,
belonging to the manifold of the mesoscopic failure mechanism Sµ, i.e. the mesoscopic crack.
In addition, the so-called material characteristic length lµ is defined as the ratio between the
measure (volume or area) of the representative volume and the measure (surface or length) of
the mesoscopic failure mechanism. The equations that govern the RVE, rephrased in terms of
micro-strain fluctuations, are the next:

PROBLEM A: Given a macroscale strain ε, and the spaces of kinematically compatible strain
fluctuations U ε̃µ , and admissible strain fluctuations, V ε̃µ, find ε̃µ ∈ V ε̃µ, being εµ = ε+ ε̃µ, such
that:∫

Bµ
σµ(εµ, dµ) : ε̂µ dB = 0 ; ∀ε̂µ ∈ V ε̃µ = U ε̃µ := {ε̃µ |

∫
Bµ
ε̃µ dBµ = 0 and ε̃µ ∈ Eµ}; (2)

ḋµ(y, εµ) = g(εµ, dµ) being Eµ = {ζ ∈ Sndim×ndim | emjqenirζij,qr = 0}

PROBLEM A is completely equivalent to the classical equilibrium problem stated in terms of
micro-displacement fluctuations, the original displacement fluctuations, ũµ, can be recovered, if
necessary for the deformed RVE visualization purposes, through an additional spatial integration
of the equation ε̃µ = ∇sũµ. However, PROBLEM A could be also rephrased as the minimization
of the potential of microscale free energy Π(ε̃µ,λ), in which the boundary conditions can be
applied via Lagrange multipliers, it can be shown that this format is suitable for reduction
purposes.

PROBLEM B (HF): (RVE saddle point problem) Given a macro-scale strain ε, find ε̃µ and
λ satisfying:

(ε̃µ(ε, dµ),λ(ε, dµ)) = arg{minε̃µ max
λ∈Sn×n

Π(ε̃µ,λ)}; such that ḋµ(y, εµ) = g(εµ, dµ) (3)

Model Order Reduction techniques:

The reduction process is divided into two sequential steps. The first step consists of a Galerkin
projection, via Proper Orthogonal Decomposition POD of the micro-strain fluctuations field,
onto a small space (reduced-order space). We seek for a reduced vectorial space of dimension
nε, with nε � Ng, for computing the micro-strain fluctuations. This low-dimension space is
obtained as the linear expansion of an orthogonal basis of nε spatial functions:

ε̃µ(y, t) =

nε∑
i=1

Ψi(y)ci(t) = Ψ(y)c(t) (4)

where each element Ψi, of the basis [Ψ], is recognized as a micro-strain fluctuation mode and
the vector of time dependent coefficients c(t) = [c1, . . . , cnε ] (c ∈ Rnε) represents the amplitude
of these modes, the variations of the micro-strain fluctutations are adopted wth an identical



approach to (4). Now, introducing (4) into the PROBLEM B, and after some manipulations, a
new model Reduced Order Model (ROM) written in terms of the micro-strain reduced basis has
been obtained:

PROBLEM C (ROM): Given a macro-scale strain ε, find c ∈ Rnε and λ ∈ Rnσ satisfying:

(c(ε, dµ),λ(ε, dµ)) = arg

{
minc max

λ∈Sn×n
Π(Ψc,λ)

}
(5)

= arg

{
minc max

λ∈Sn×n

∫
Bµ
ψµ[ε,dµ](ε+ Ψc) dBµ + λT

(∫
Bµ

ΨdBµ

)
c

}
(6)

such that: ḋµ(y, εµ) = g(εµ, dµ)

In many cases, it is an accepted fact that, although ROM markedly reduces the number of
unknowns in the problem (in the present case, the dimension nε of the vector c in Eq. 4), this
does not translate into an actual reduction of the computational cost and, consequently, in a
problem speedup. Therefore, further actions should be taken. These actions are known in the
literature with the term hyper-reduction [1], which gives rise to the HyPer-Reduced Order Model
(HPROM), the main goal is to reduce the number of integration points given by the standard
Gauss quadrature, by defining a new scheme that efficiently determines optimal integration
points and its corresponding weights so that the error in the integration of the reduced model is
minimized. More specifically, the integral term involving the free energy ψµ[ε,dµ] is evaluated as:∫
Bµ
ψµ[ε,dµ](ε+ Ψ(y)c) dBµ ≈

Nr∑
j=1

ψµ[ε,dµ](ε+ Ψ(zj)c)ωj :=

∫ ∗
Bµ
ψµ[ε,dµ](ε+ Ψ(y)c) dBµ (7)

Taking PROBLEM C, Eq. (7) can be utilized to evaluate the derivatives in the optimality
condition (Euler equations), yielding the following set of equations, from now on termed HPROM:

PROBLEM D (HPROM): Given a macro-scale strain ε, find c ∈ Rnε and λ ∈ Rnσ satisfying:

∂Π

∂cT
=

∫ ∗
Bµ

Ψ(y)σµ(y, c) dBµ +

(∫
Bµ

Ψ(y)T dBµ

)
λ = 0;

∂Π

∂λT
=

(∫
Bµ

Ψ(y) dBµ

)
c = 0 (8)

A similar procedure could be also used for the other integral terms in PROBLEM D, but, these
being constant terms (not depending on the unknowns of the problem) they can be integrated
once for all (presumably in the off-line stage), using the standard Gauss quadrature, the result
being stored and used, when necessary, in the on-line stage.

Numerical Results: Application to simulation of fracture in cementitious materials

The macro-scale will be splitted into two subdomains, the dark gray domain will be modeled
using an elastic monoscale constitutive law, taking the elastic homogenized constitutive tangent
tensor, and, in the green domain the Hiper-Reduced Order Model (HPROM). The finite element
mesh of the meso-scale is also depicted in figure (1-b), Material properties have been taken
from [3]. The figure (2-a) shows the structural response in terms of load-displacement (P− δ)
curve (vertical load of the bottom, rightmost corner node versus displacement at the same place)
for each set of strain modes nε and integration points nr. It is also shown the sensitivity in
the convergence of the structural behavior as nε increases. In figure (2-b), it can be observed
the convergence results for the meso-scale tests using the HPROM; fixing a number of strain
modes nε, we get an optimal number of integration points. In addition, it can be immediately
noticed that, as the number of strain modes nε increases, the error decreases monotonically.
The imposition of a judicious equilibrium between error and number of integration points plays
an important role in the good performance of the method.



(a) Macroscale FE dis-
cretization

(b) Meso-scale FE dis-
cretization

(c) Material properties

Figure 1. Finite element discretization and material properties

(a) Macro-structural response - L Shape Panel (b) Convergence analysis of the meso-scale

Figure 2. Convergence error in macro and meso scales

Conclusions

The result of this work is a reduced model based on a hierarchical FE2 multiscale approach
for material failure in cementitious materials, that preserves all features of the standard FE
model [2]. Furthermore, the two presented simulations show the convergence of the meso-scale
and the sensitivity of the macro-structural behavior, as a function of the amount of strain
modes, nε, and the number of integration points, nr. The reduced model solves the problem of
unafordable computational cost.

Acknowledgements

The research leading to these results has received funding from, on the one hand, the European
Research Council under the European Union’s Seventh Framework Program (FP/2007-2013) /
ERC Grant Agreement n. 320815, Advanced Grant Project COMP-DES-MAT.

References

[1] J. Oliver, M. A. Caicedo, A. E. Huespe, J. Hernandez, and R. Roubin. Reduced order
modeling strategies for computational multiscale fracture. Computer Methods in Applied
Mechanics and Engineering, Vol. 313:560–595, 2017.

[2] J. Oliver, M. A. Caicedo, R. Roubin, A. E. Huespe, and J. Hernandez. Continuum approach
to computational multi-scale modeling of propagating material failure. Computer Methods
in Applied Mechanics and Engineering, Vol. 294:384–427, 2015.

[3] J. Unger. Multiscale modeling of concrete - from mesoscale to macroscale. Archives of
Computational Methods in Engineering, Vol. 18:p. 341–393, 2011.


