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Micro Abstract
An isotropic gradient-enhanced damage formulation is coupled to finite von Mises plasticity. In the
context of finite elements an additional field variable, representing nonlocal damage, is introduced.
In a multisurface approach, the evolution of damage and plasticity are governed by their respective
criteria. Simulation results are compared to experimental data to verify the model.
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Introduction

After giving a short summary of the gradient-enhanced isotropic damage model coupled to finite
plasticity, an alternative element formulation — the F-bar formulation from [1] — is discussed
to overcome problems related to volumetric locking. The result section compares the standard
and F-bar formulations and shows the regularisation of the framework.

1 Gradient-enhanced isotropic damage coupled to finite plasticity

The gradient-enhancement follows the approach of [2, 7]. The theory presented here is an
extension to large strain of the formulation established in [3]. Large strain damage models in
this regularisation framework are also proposed in [4, 8].
An additional field variable φ is introduced and connected to the local damage variable d by
means of a penalty term in the free Helmholtz energy Ψ . Consequently, φ is called nonlocal
damage field in the following. Now, penalising the gradient of the nonlocal damage field indirectly
also penalises the gradient of the local damage variable without the necessity to compute the
gradient of d directly. Thereby, the implementation of the gradient-enhancement becomes
independent of the formulation of the local material model incorporating the local damage
variable d.
The free Helmholtz energy is completed by an elastic part formulated with the help of the elastic
logarithmic strain tensor εe, see e.g. [5], and a plastic contribution taking linear hardening into
account, i.e.
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The volumetric and isochoric elastic energy contributions are weighted differently with damage
functions f•(d) defined as

f• : R+
0 → ]0, 1] with f•(d) := exp(−η• d) , (2)

such that the local damage variable d is unbounded towards infinity. Following standard
thermodynamics, the driving forces, the Mandel stress mt and the damage driving force q, are
defined as

mt := 2
∂Ψ

∂be
· be , mt

eff := mt [fm(d)]−1 and q := −∂Ψ
∂d

. (3)



The postulate of equivalent strain is employed, defining the effective Mandel stress mt
eff , in

order to enable evolution of plasticity even after the initiation of damage evolution. By using a
multisurface approach, the evolution of damage and plasticity is governed by their respective
criteria — the damage criterion Φd and a von Mises yield criterion including linear hardening Φp

Φd(q, d) = q − qmin [1− f q(d)]n and Φp(mt, β, d) = ‖ dev(mt
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The associative evolution equations are discretised in time with the help of the exponential
map in the case of the plastic part and a standard backward Euler scheme for the damage part.
Hence, it is only necessary to solve for the two Lagrange multipliers connected to the yield and
damage criterion respectively at every quadrature point. The double set of Karush-Kuhn-Tucker
conditions is solved here with an active-set scheme.

2 F-bar formulation

The standard finite element formulation of the previously summarised material model exhibits
reduced regularisation behaviour [6]. A possible reason might be the isochoric evolution of
plasticity which can result in volumetric locking if low order elements are used. Instead of using
higher order elements, which are numerically expensive, the F-bar formulation from [1] is a
numerically inexpensive alternative. The deformation gradient at each quadrature point F is
split into its volumetric and isochoric part. The volumetric part is replaced by the volumetric
part of the deformation gradient evaluated in the center of the current element F 0, which defines
a new deformation gradient

F̄ =

[
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] 1
3

F . (5)

These modifications only lead to implementation changes in the element formulation, since
the material response is computed for F̄ . The tangents computed at material point level are
derivatives with respect to F̄ , which can be transformed to derivatives with respect to F on
element level. Considering an element formulation based on the Piola stress tensor P , the
derivative with respect to the displacements ueAof element e and node A reads
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3 Simulation results

All simulations are carried out using a notched plate — symmetry is used to reduce the problem
size — discretised with 1350, 5400 or 12150 number of elements. The notch is a circular hole
with a radius of a quarter of the width of the plate. The elastic and plastic material parameters
are taken from measurements on DP800, while the damage related parameters are chosen to
qualitatively match the observed experimental behaviour. The parameters listed in Table 1
represent the reference set, such that only parameters deviating from this set are mentioned in
the following.

E ν σ0
y h qmin n ηvol ηiso ηq ηm cd βd

GPa − MPa GPa MPa − − − − − N MPa

208 0.3 809 6 2.0 2/3 0.7 0.7 10 0.7 500 500

Table 1. List of material parameters used in the reference set.
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Figure 1. Load displacement diagram of the notched
plate under tension comparing the F-bar formulation
(continuous line) with the standard element (dashed
line) for two parameter sets
(blue: ηiso = 0.0, qmin = 1.75 MPa;
green: ηvol = 0.0, qmin = 3.0 MPa).
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Figure 2. Load displacement diagram of the notched
plate comparing the response for a regularisation
parameter cd = 200 N with cd = 500 N for
discretisations with 1350, 5400, and 12150 elements.

3.1 Comparison of standard and F-bar formulation

Figure 1 compares the standard and F-bar formulation by separating the influences from
volumetric and isochoric strains on the evolution of damage. All responses display distinct
elastic, plastic and damage dominated regions. For damage driven by volumetric deformations
(blue curve) the standard formulation leads to earlier initiation of damage. Even though the
standard formulation is usually stiffer than e.g. an F-bar formulation, in the context of damage
this has to be interpreted differently. The stiffer response has its origin in an overestimation of
the volumetric strains which leads here to a higher damage driving force and consequently to
earlier violation of the damage criterion.
If the volumetric strain does not influence the evolution of damage (ηvol = 0.0, green curve) the
intuitive result of a stiffer response of the standard formulation is observed.

3.2 Regularisation

Previously, for the standard formulation, a sufficient regularisation could not be observed [6].
Implementing the F-bar formulation now shows satisfying regularisation, see Figures 2 and 3. In
Figure 2 the load displacement diagrams for three different discretisations (depicted by different
line styles) and two values of the gradient parameter cd are compared. Again, it is possible to
identify an elastic, a plasic and damage dominated region. Clearly, for cd = 500 N (green curves)
the responses of different discretisations coincide, exemplifying a sufficient regularisation. Also
for cd = 200 N (blue curves) the responses only slightly deviate after damage evolved for some
time. These small deviations can stem from even smaller numerical pertubations earlier in the
computation, which in the damage region leads to a slightly different path taken.
Proper regularisation for the case of cd = 200 N can also be seen in Figure 3. One observes a
zone of damage with defined width at the smallest cross-section. For both discretisations the
width of the damage zone is equal, which is clearly exhibited in the undeformed plot (b).

Conclusions

The damage formulation was enhanced by the gradient of an additionally introduced nonlocal
field to circumvent direct calculation of the gradient of the local damage variable. A damage
model coupled to finite plasticity with separate damage and yield criterion was implemented.
The F-bar formulation, to prevent volumetric locking, was compared to the standard formulation



a) deformed contour plot of d b) undeformed contour plot of d

Figure 3. Notched plate under tension with reference parameter set and cd = 200 N. Contour plots of the
damage variable extrapolated to the nodes. The left half of each image shows a discretisation with 12150
elements and on the right half (mirrored) a discretisation with 5400 elements is depicted. The left image (a)
shows deformed meshes while the right image (b) shows the undeformed state.

for damage models. Within the standard formulation damage initiates earlier compared to the
F-bar formulation. While the standard element formulation seemed to not perfectly regularise,
the F-bar formulation analysed here exhibited excellent regularisation properties.
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