
Proceedings of the 7th GACM Colloquium on Computational Mechanics
for Young Scientists from Academia and Industry

October 11-13, 2017 in Stuttgart, Germany

Cycle-by-cycle fatigue damage model for
concrete
Thomas Titscher1*, Jörg F. Unger1 and Javier Oliver2

Micro Abstract
Damage caused by stress concentrations in the complex mesoscopic geometry of concrete leads to
continuous stress redistribution over the material’s life time. The presented fatigue damage model
captures this by resolving each load cycle in a cycle-by-cycle time integration. The model extends a
static damage model to failure caused by the (time dependent) strain amplitudes and, thus, allows
calibrating the majority of the material’s parameters in static experiments.
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Introduction
Lifetime aspects including fatigue failure of concrete structures were traditionally only of minor
importance due to the limited amplitude of the applied cyclic loads compared to the constant
dead load. However, because of the growing interest in maxing out the capacities of concrete, its
fatigue failure has become an important issue. Typical examples are offshore wind energy plants,
which undergo extreme loading conditions of non-uniform amplitudes arising from wind and
waves or fatigue loading of bridges with a steady increase of traffic load. However, a variety of
interacting phenomena, such as the loss of prestress, the degradation due to chemical reactions
or creep and shrinkage, influence the fatigue resistance. As a consequence, it is difficult to
estimate the lifetime using only experimental techniques. Furthermore, failure due to cyclic loads
is generally not instantaneous, but characterized by a steady damage accumulation. Therefore,
a reliable numerical model to predict the performance of concrete over its lifetime is required.

1 Fatigue damage model
Fatigue behavior is usually divided into two categories, high-cycle fatigue and low-cycle fatigue.
High-cycle fatigue involves the application of a large number of cycles (≈ 106) at low load
levels. Many numerical models employ Paris law [7]. A damage equation is formulated including
the number of cycles N as a model parameter [8, 9]. This approach cannot capture stress
redistributions during the loading history.

Low-cycle fatigue aims at capturing few loading cycles at high amplitudes. A stress-strain
relationship is integrated in a cycle-by-cycle integration, requiring O (10) time steps by cycle.
One approach, followed in this paper, is Marigo’s formulation [4]. A static damage model - that
only accumulates damage if its driving variable reaches a historic maximum - is extended to allow
damage growth well below this value. This approach is little invasive and allows straightforward
coupling in a multiphysics context, e.g. including temperature strains, creep phenomena or
plasticity.



1.1 Definition of a static local damage model

The local damage model is a combination of a linear elastic model and the damage variable ω,
ranging from ω = 0 (virgin material) to ω = 1 (complete loss of stiffness)

∇ · σ = ∇ · ((1− ω(κ))C : ε) = 0 (1)

with the isotropic stiffness tensor C, the Cauchy stress σ and the infinitesimal strain ε. The
damage is driven by the strain-like history variable κ through the damage law [5,6]

ω(κ) =

{
0 κ < κ0

1− κ0
κ exp

(
−fct

gf
(κ− κ0)

)
otherwise

(2)

with the material parameters k0 = ft/E, Young’s modulus E, tensile strength ft and the fracture
energy parameter gf . The Karush-Kuhn-Tucker conditions

κ̇ ≥ 0, εeq − κ ≤ 0, κ̇ (εeq − κ) = 0 (3)

determine κ by a scalar equivalent strain measure εeq. The strain-based modified von Mises def-
inition [1] is used here. It is capable of capturing the difference of tensile strength to compressive
strength of concrete.

Equation (3) is transformed equivalently into the evolution equation

κ̇ =

{
ε̇eq if εeq = κ

0 otherwise,
(4)

meaning that κ only grows (and damage ω increases) if the equivalent strains exceed their
historic maximum. This relates to the static loading case in fig. 1.

1.2 Extension to cyclic loading

Equation (4) is extended to allow damage growth below the historic maximum κ = εeq.

κ̇ =

{
ε̇eq if εeq = κ

|ε̇eq|f otherwise
(5)

The scaling function f has to be chosen empirically. Here it is defined as

f(σ) = A

〈
σeq(σ)− σ∞

〉
+

ft
, (6)

where σeq is the Rankine stress norm. The combination of the fatigue limit σ∞ and the Macaulay
brackets 〈〉+ prevents damage growth below σ∞. The scaling parameter A allows further
calibration of the model. Equation (5) is discretized in each global time step n. An implicit
Euler backward requires a solve for κ for each integration point. This is avoided by using the
explicit Euler scheme.

2 Integration point results
Uniaxial stress/strain curves are plotted for various loading cases in fig. 1. A monotonic increase
of the strain results in the static loading. Stress increases with the elastic stiffness until the
tensile strength ft is reached. The post-peak behavior is controlled by the damage law (eq. (2)).
The strain controlled curve is created with two cyclic loading phases. The very first cycle follows
the static curve. Each subsequent unloading/loading cycle increases the damage and reduces the
materials stiffness. During the transition to the second loading phase (cyclic loading at a higher
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Figure 1. Stress and strain controlled low-cycle fatigue experiments.
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Figure 2. Parameter study based on Wöhler lines with cyclic loading between 0 and σmax

mean strain), the static limit is reached again. Further loading, again, reaches the static envelop
curve and follows it.

The two stress controlled experiments with the same stress amplitude at different mean stresses
are also shown. Once the static curve is reached, the desired stress can no longer be reached,
which corresponds to material failure. The definition of the scaling function f (eq. (6)) includes
the current stress σ. Thus, the material endures less loading cycles at high stresses compared to
loading at a lower mean stress.

The fatigue behavior can be characterized by σ−N curves, also known as Wöhler curves that are
shown in fig. 2. The endurable number of stress cycles Nf for a cyclic sinusoidal loading between
0 and σmax is shown. Cycles below the endurance stress σ∞ do not lead to material failure.
Additionally, this parameter influences the slope of Wöhler curves. The scaling parameter A
shifts the curves.



3 Computational cost
The application of the cycle-by-cycle integration to high-cycle fatigue requires sophisticated time
integration schemes to handle the computational cost. Temporal multi-scale schemes [2,3] or
jump-in-cycle techniques [8] assume an almost linear evolution of the damage variable over a
wide range of cycles. The damage increment of a few explicitly integrated cycles is extrapolated
to a large number of cycles. The computational cost can be reduced to a fractional amount of
the full cycle-by-cycle analysis and the approach becomes feasible.

Conclusions
The presented fatigue model is a little invasive extension of an isotropic static damage model.
The evolution equation of the damage driving variable is enhanced to allow damage growth
below the static limit. Since the damage law remains untouched, most of the models parameters
can be calibrated in static experiments.

Wöhler curves on an integration point level are obtained from a cycle-by-cycle time integration
of the model. As shown in the parameter study, the two fatigue parameters allow calibration to
experimental data.
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