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A method for the elimination of shear locking
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Micro Abstract
Shell elements for slender structures based on a Reissner-Mindlin approach struggle in pure bending
problems. The stiffness of such structures is overestimated due to the transversal shear locking effect.
Here, an isogeometric Reissner-Mindlin shell element is presented, which uses adjusted control meshes
for the displacements and rotations in order to create a conforming interpolation of the pure bending
compatibility requirement. The method is tested for standard numerical examples.
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Introduction

Isogeometric analysis (IGA) has many benefits due to the, in CAD commonly used, NURBS shape
functions. The high continuity of these functions reduces the computational effort for complex
structures and unifies the design and analysis process. However, IGA formulations suffer from
locking which adds artificial stiffness and leads to an underestimation of the deformations. The
use of higher order shape functions and reduced integration only alleviates the problem. Other
methods have been adopted from FEM, such as the Discrete Strain Gap method (DSG), the
enhanced assumed strain method (EAS) and the B-bar method. Here, the focus is on a method
proposed by Beirão da Veiga [1] for the elimination of transverse shear locking in Reissner-Mindlin
plates. The approach is extended to the Reissner-Mindlin shell from Dornisch [2].

1 Isogeometric Reissner-Mindlin shell analysis

1.1 Reissner-Mindlin shell formulation

The Reissner-Mindlin shell which was proposed by Dornisch [2] is derived from continuum
mechanics and described only by its midsurface. The thickness direction is defined by the
director vector. The reference director vector D coincides with the normal vector of the shell
surface and has the length |D(ξα)| = 1. Since the shell element is linear, a difference vector
formulation can be applied for the definition of the deformed director vector d = D + b. The
difference vector b = ω ×D is constructed by the vector cross product between the rotational
parameter of the shell midsurface ω and the reference director vector. Its derivative with respect
to the parametric coordinates ξα is given as follows

b,α = ω,α ×D + ω ×D,α (1)

The shell strains that result from the linearized Green-Lagrange strain tensor are sumed up in

the vector ε =
[
ε11 ε22 2ε12 κ11 κ22 2κ12 γ1 γ2

]T
where εαβ are the membrane strains,



καβ the curvature of the shell and γα the shear strains:

εαβ =
1

2
(X ,α · u,β +X ,β · u,α) (2)

καβ =
1

2
(X ,α · b,β +X ,β · b,α +D,α · u,β +D,β · u,α) (3)

γα = X ,α · b+ u,α ·D (4)

The weak form of equilibrium which is used for the shell formulation is given as:

G(υ, δυ) =

∫
Ω
δεT · σ dA−

∫
Ω
δυT p̄ dA−

∫
Γt

δυT t̄ ds = 0 (5)

with p̄ the surface loads, t̄ the boundary tractions and υ =
[
u1 u2 u3 β1 β2

]T
the solution

variable. The stress resultants σ are later replaced in the weak form using Hookes Law σ = C · ε.

1.2 NURBS-based isogeometric analysis

The shell surface is described using Non-Uniform Rational B-Splines NI . The position vector X
of an arbitrary physical point on the NURBS surface and its derivative is interpolated as follows

X(ξ1, ξ2) =

nen∑
I=1

NI(ξ1, ξ2)XI
∂

∂ξα
X(ξ1, ξ2) =

nen∑
I=1

∂NI(ξ1, ξ2)

∂ξα
XI (6)

Analogously, the interpolation of the nodal director vectors D and its derivative D,α is

D(ξ1, ξ2) =

nen∑
I=1

NI(ξ1, ξ2)DI D,α(ξ1, ξ2) =

nen∑
I=1

NI,α(ξ1, ξ2)DI (7)

The difference vector b and its derivative are described using the rotational parameter ω, see
(1). Furthermore, there exist a connection between ω and the nodal rotations βI

ω(ξ1, ξ2) =

nen∑
I=1

T 3INI(ξ1, ξ2)βI ω,α(ξ1, ξ2) =

nen∑
I=1

T 3INI,α(ξ1, ξ2)βI (8)

For a smooth surface the transformation matrix T 3I includes only two nodal basis sytem vectors
of the reference configuration T 3I =

[
A1I A2I

]
. The third one A3I is not included in order to

avoid zero energy modes from drilling rotations. The basis is computed using the method of
optimal nodal basis system from Dornisch [2].

1.3 Adjusted approximation spaces against transverse shear locking
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Figure 1. Adjusted approximation spaces for ui and βα and the resulting global mesh.

The root of the transverse shear locking in pure bending problems lies in the compatibility
requirements, which are for instance for plane surfaces as follows

u3,1 + β1 = 0 u3,2 + β2 = 0 (9)



and must be fullfilled, especially for Kirchhoff-Love like shells. The use of the same shape
functions for the displacements ui and the rotations βα leads to a mismatch in (9) which creates
the locking effect. Thus, transverse shear locking is a numerical error not a physical error.
Beirão da Veiga et al. [1] proposed a simple but effective method for treating this discrepancy,
which uses different shape functions for ui and βα with compatible polynomial degrees. This
neccesitates seperate control meshes for the displacements and the rotations, see Figure 1. The
meshes of the rotations β1 and β2 have a ploynomial degree less than ui in the relevant direction.
It is important to mention that the starting geometry is the same for all three meshes. Only by
applying different levels of refinement, the new control meshes are created. Thus, the isogeometric
concept still holds. The solution of the weak formulation requires the implementation of a global
mesh, which includes the control points from all three meshes. In this manner, the new mesh
has control points with three, four or five degrees of freedom. The shell strains of the new global
mesh can be devided in three parts, each of which arises from one of the three control meshes:

δεI = BuT

I · δuI +B
βT
1
I · δβ1I +B

βT
2
I · δβ2I (10)

Bu
I is a 3x8 Matrix which includes the shape functions Nu

I from (6) and (7) whereas B
βT
1
I and

B
βT
2
I have the dimension 1x8 and contain the shape functions Nβ1

I , Nβ2
I and the discrete nodal

basis systems Aβ11I , A
β2
2I from (8). The new weak form based on the global control mesh reads

G(υ, δυ) =

numel∑
e=1

(nges∑
I

mges∑
J

δυTI

∫ B
uT

I · C ·Bu
J BuT

I · C ·B
β1
J BuT

I · C ·B
β2
J

B
βT
1
I · C ·B

u
J B

βT
1
I · C ·B

β1
J B

βT
1
I · C ·B

β2
J

B
βT
2
I · C ·B

u
J BI

βT
2 · C ·Bβ1

J B
βT
2
I · C ·B

β2
J

 dA · υJ

− δυTe ·


∫ 

Nu
I 0 0 0 0

0 Nu
I 0 0 0

0 0 Nu
I 0 0

0 0 0 0 0
0 0 0 0 0

 ·

qx
qy
qz
0
0

 dA− f extboun


 = 0 (11)

2 Numerical examples

2.1 Skew plate
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Figure 2. Razzaque’s skew plate
subjected to a uniformly distributed
load.
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Figure 3. Error for center deflection with neq the number of
equations for the solution.

The skew plate, see Fig. 2, examines the sensitivity of an element to mesh disortions. For high
slenderness it exhibits transverse shear locking. Fig. 3 shows the relative error of the deflection
at the center of the plate. The proposed element with adjusted approximation spaces (AAS)
is compared to an isogeometric Reissner-Mindlin plate (IGA Plate) and the Bathe/Dvorkin
4-node thin plate bending element (FE Bathe/Dvorkin) which already includes an anti locking



mechanism. The standard IGA plate element clearly exhibits transverse shear locking for a low
number of elements. The higher the number of elements get, the more the effect is alleviated.
On the other hand, the AAS element is not affected by locking even for a low number of elements
and shows a constant convergence rate. This rate is the same as for the FE Bathe/Dvorkin
element. However, AAS compared to FE Bathe /Dvorkin has slightly better results due to the
use of a higher polynomial degree for the displacements.

2.2 Partly clamped hyperbolic paraboloid
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Figure 4. Partly clamped hyperbolic
paraboloid.
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Figure 5. Error for deflection at X = L
2 , Y = 0 with neq

the number of equations for the solution.

The partly clamped hyperbolic paraboloid is bending dominated and a good example for the
investigation of locking effects in shells. The problem consists of an partly clamped surface
defined as Z = X2 − Y 2; (X,Y ) ∈ [(−L/2;L/2)]2 which is loaded by self-weight, see Figure 4
The reference solution was adopted from [3] for a 48x24 mesh of MITC16 elements. In Figure 5
the L∞ error norm of the deflection at point X = L

2 , Y = 0 is given. The AAS element with
pu always shows a higher accuracy than its equivalent IGA element with p = pu. Interesting is
that the resulting convergence rates are almost the same for AAS and IGA, resulting in almost
parallel error lines. The higher the polynomial degree the smaller the difference between the two
lines, due to the alleviation of locking effects with higher order shape functions. It is important
to mention that for curved shells, transverse shear locking usually occures simultaneously with
other locking effects, such as membrane locking. These effects are not treated with this method.

Conclusions

In this work a method for the treatment of transverse shear locking effects in shell elements was
proposed. The method uses adjusted approximation spaces for the displacements and rotations
in order to fullfil the two compatibility requirements for pure bending. The method showed
higher accuracy compared to the standard IGA element, even for skew geometries. Furthermore,
it can compete with the element formulation of Bathe and Dvorkin.
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