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Micro Abstract
Even if spectral analysis seems to be restricted to linear operators, it turns out that it is also applicable
to nonlinear operators by turning them linear by embedding these in a much larger space and analyzing
the Koopman operator. Spectral analysis will be possible but in an infinite dimensional space. We
show a numerical approach, which allows to separate different parts of instationary data in a time
vanishing part and a remaining part. We discuss implications for calculation and IO.
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Introduction

Linear operators and different kind of matrices are used and deeply analysed as well in mathe-
matics and numerics as also in nearly any application oriented research area. On the other hand
most relevant models of nature are nonlinear, so that linear theory seems to be applicable only
to local approximations. But a little trick extends the nonlinear to a linear operator, named
Composition or Koopman operator, acting on a subspace of the continuous functions on the
primary space. This extended linear operator has nice properties, it is bounded, say continuous,
has a spectrum and typically eigenvalues and stable eigenspaces. This operator is subject to a
discipline of functional analysis, the Ergodic Theory, going back to Ludwig Boltzmann, later
investigated by John von Neumann, George David Birkhoff, Bernard Osgood Koopman [4],
Norbert Wiener, Aurel Friedrich Wintner, and described in the monograph [3].

What the significance of the Koopman operator and its properties is for a specific scientific
domain, has to be analysed. At least the Koopman operator reveals structures directly connected
to the nonlinear operator in mind.

Another question is the numerical analysis of these relationships. Even for simple examples the
relevant linear spaces are infinite dimensional and not directly accessible by finite dimensional
matrix theory. But the approach of the Dynamic Mode Decomposition theory of Peter Schmid [5]
turned out to be related to the Koopman operator as pointed out by Igor Mesić and coworkers
in [1] and Clarence Rowley and his coworkers in [2].

We try here to make some steps further to general applicability and for understanding what that
implies for the analysis of the solutions of nonlinear partial differential equations. in addition,
we give also a link to spectral theory of Fourier analysis.

1 The Koopman Operator

Assume a compact space K and a continuous transformation

ϕ : K → K (1)

K may be a subset of any topological space with or without any further structure as e.g. being
a vector space. Assume a vector space of ”observables” F ⊂ C (K) describing the nature of the
elements of K which is stable in the sense

f ∈ F ⇒ f ◦ ϕ ∈ F (2)



so that the observables can be applied to the composition with the operator. Because of this
property, the observables might be infinite dimensional. This property enables the definition

f ∈ F ⇒ Tϕf := f ◦ ϕ ∈ F (3)

The operator Tϕ is linear, continuous and bounded operator on the in general infinite dimensional
space F . If f1, f2 ∈ F with f1f2 ∈ F then Tϕ (f1f2) = (Tϕf1) (Tϕf2). Tϕ has a spectrum and
may have eigenvalues and eigenvectors, which are elements of F and not of K. The Koopman
operator of an linear operator acting on a compact subset of a finite dimensional space is not
identical with this operator. With two eigenvalues also their product is an eigenvalue if the
product of both eigenfunctions is not 0. All eigenvalues have to have a modulus not larger than
1 because K is compact. The eigenfunctions f fulfill Schröders equation [6]

f (ϕq) = λ f (q) ∀ q ∈ K (4)

The calculation of the spectrum in a numerical way is not clear because an operator on an
infinite dimensional space has to be handled.

The operator ϕ on the space K has no restrictions in terms of potential applications. It might
describe e.g. discretization of nonlinear time dependent partial differential equations (e.g.
Navier-Stokes equations) including varying boundary conditions and geometrical boundaries.
The iteration trajectories are not forced to converge. Ensembles as in weather forecast are
allowed. Non well posed problems can be handled with chaotic or turbulent behaviour, or mixing
fluids, particle systems. Also agent based systems as operators on changing graphs and any
sequence of measurements can be handled as long as the defining operator is not changed. For
the procedures given, it is not necessary to know the operator explicitly, only a sequence of
observed values underlying the iterated operator.

1.0.1 Minimum Sets

For handling a PDE (e.g. the incompressible Navier-Stokes equations) discretized by operator φ
we restrict the compact space K to a single trajectory (qk)k=[0:∞[ defined by qk+1 = ϕ qk = ϕkq0

including the accumulation points. K = {ϕkq0 | k ∈ N0} is part of the product space over N0 of
all state variables at all different discretization nodes. For the analysis it is sufficient to have a
vector of observables f and the sequence fk = f (qk) = Tϕf (qk−1). Trajectory and observables
are stable with respect to ϕ. The Koopman operator acts on the sequence by shifting.

If the vector of observables f consists on the evaluation functionals δx for all discretization nodes
x, then f could be understood as embedding and fk = qk. This assumes, that K has a linear
structure.

1.0.2 Approximation of an λ-eigenmode along a trajectory

Assume a polynom coefficient vector α = (αk)k=[0:p−1] defining the polynom C 3 µ 7→ α (µ) =∑p−1
k=0 αk µ

k. Assume further a complex number λ not being root of this polynom, α (λ) 6= 0 .

Define an induced sequence

f̂α,λj =
1

α (λ)

p−1∑
k=0

fj+k αk ∀ j = 0, 1, 2, · · · (5)

summing up p sequential weighted values along the trajectory. The approximate eigenvector
condition for shifted elements is

0 ≈ −λf̂α,λj + f̂α,λj+1 =
1

α (λ)

p∑
k=0

fj+k ck ∀ j = 0, 1, · · · (6)



where the polynom coefficient vector c is given by the product of polynom α and the polynom
µ 7→ µ− λ. Finding eigenvectors is equivalent in finding nullvectors along the trajectory. An
important eigenvalue is 1, which is related to the arithmetic mean along the trajectory. The
constant boundary conditions are special eigenvectors of the eigenvalue 1.

The in this way defined λ-eigenmode mapping operator

•̂λ : f 7→ f̂λ = f̂α,λ (7)

can be applied to a sequence of scalars or vectors or functions or vector fields in the appropriate
spaces. By some some reasonable conditions for α and c this operator can be interchanged
with spatial (discrete) differential or integration operators making partial differential equations
accessible.

2 Numerical techniques

All the numerical techniques define a large matrix consisting on all measured or calculated values

G = G[0:n] =
[
f0 f1 · · · fn

]
(8)

1. The Dynamic Mode Decomposition (DMD) method of Peter Schmid [5] can be formulated
in a way of determining a vector c[0:n], so that GT[0:n−1]G[0:n] c[0:n] = 0. The roots
of the associated polynom of c[0:n] are the approximative eigenvalues λl, the vectors
G[0:n−1] wl/wl (λl) the approximative eigenvectors.

2. Define the matrix H = GT G and the convolution matrix (a Toeplitz matrix) for p ≤ n

A(c) =



0 n− p
0 c0

1 c1
. . .

. . c0

. . c1

p cp
...

.
. . .

n cp


(9)

and search c with the property that µc is minimal subject to the matrix inequality

0 ≤ A(c)∗ H A(c) ≤ µc A(c)∗ A(c) (10)

and that the roots of c have modulus not larger than 1. Again the roots are the approxi-
mative eigenvalues and the approximative eigenvectors are determined as before.

3. Taking the trace on both sides and dividing by n− p+ 1 leads to〈
Hn−pc, c

〉
≤ µc ‖c‖2 (11)

with the Cesáro means matrix

Hn−p =
1

n− p+ 1

n−p∑
j=0

GT[j:j+p] G[j:j+p] (12)

We can show, that these matrices converge for n → ∞ and a sequence of vectors c[0:p]
can be found, so that the roots of the related polynoms converge to the eigenvalues of
modulus 1 of the Koopman operator which have only a countable number. Eigenvalues
and eigenvectors are determined as before.



4. The following is a Rayleigh like approach. Minimize with respect to λ with |λ| ≤ 1 and α
the Rayleigh quotient

max
b 6=0

∥∥∥∥G[0:p]

[
−λ
1

]
∗ α ∗ b

∥∥∥∥∥∥G[0:p−1]α ∗ b
∥∥ (13)

If this minimum value is near to 0, α is an eigenvector approximation and λ the eigenvalue.
α should be forced in having only roots with modulus less or equal 1. If the minimum
reached is near to 0, also the other roots of α are candidates for eigenvalues and can be

tested with the same formula. c =

[
−λ
1

]
∗ α plays the same role as before.

Conclusions

We show an universal approach for the analysis of iterated data produced by nonlinear operators.
What eigenvectors of the Koopman operator mean for the special physical setting is a question
for the different application domains. We can show relations to Fourier analysis and Ergodic
theory. As the spectrum of operators on infinite dimensional spaces is typically not discrete, the
question arises, who to handle the continuous part. This part is related to a partial sequence of
the given sequence which is disappearing, if the time step is going to ∞. How this continuous
part appears in the results of proposed algorithms, is still not clear. Also not clear is, how
accurate eigenvalues with modulus less than 1 are calculated. The algorithms are delivering
these, different to Fourier analysis.

An analysis program has been developed to calculate approximative eigenvectors of fluid flow
simulations.
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