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Micro Abstract
In this contribution the SBFEM is used to analyse axisymmetric shell structures. A simplified plane
strain arch formulation to approximate a cylindrical shell will be presented. This approximation
already shows a high correlation with the membrane theory of shells. Furthermore, first results
obtained for a 3D shell formulation used to analyse an axisymmetric spherical shell will illustrate the
potential of the SBFEM to minimize locking effects when modelling shell structures.
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Introduction

Numerical modelling of shell structures is still a subject of high interest to this day. This
sustained interest is due to a variety of reasons. Firstly, shell structures can be found in many
structural engineering applications. In general, the structural behaviour of shells is analysed
numerically, since complex shell geometries limit the applicability of analytical solutions. The
primary reason, however, is the occurrence of locking effects when using conventional finite
elements. Shell elements are affected by membrane locking as well as shear locking, with
membrane locking being more dominant. These locking effects result in an overly stiff behaviour
of the numerical model. Shear locking means zero transverse shear strains cannot be accurately
represented. On the other hand, membrane locking is associated with failure to represent the
state of zero membrane strains in curved structures. Both locking effects increase as the shell
thickness decreases. Approaches to avoid locking of shell structures include reduced integration,
discrete strain gap formulation, assumed natural strain approaches and enhanced assumed strain
methods.
The scaled boundary finite element method (SBFEM) combines the advantages of the finite
element method and the boundary element method. In this semi-analytical approach, the
spatial dimension is reduced by one through only discretizing the boundary of the domain. This
semi-discretization process results in a set of ordinary differential equations which can be solved
analytically in order to obtain the static stiffness matrix. Plate elements based on the SBFEM
have already been developed and been shown to successfully avoid shear locking completely
[1,2]. The principal approach for these elements is to discretize only the mid-surface and to solve
analytically in the through-thickness direction. Locking effects of shells are heavily dependent on
the thickness of the structure, therefore the SBFEM seems to be a promising method to develop
elements that show reduced locking effects for shells since the through-thickness direction is
handled analytically. The present work reports first studies on the development of SBFEM-based
shell elements in the form of a numerical example for a spherical zone shell under constant
pressure.

1 The scaled boundary finite element method

The derivation of the scaled boundary finite element method starts with the choice of the
so-called scaling center O, from where the whole boundary must be visible. The dimensionless
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Figure 1. Scaled boundary local coordinates
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Figure 2. Spherical zone shell

local coordinates η, ζ and ξ are introduced to describe the domain. Here, the local coordinates
η and ζ describe the circumferential directions of the boundary. The coordinate ξ points from
the scaling center O in radial direction towards the boundary, with ξ = 0 at the scaling center O
and ξ = 1 on the boundary (see Figure 1). Interpolating the nodal coordinates {xn}, {yn} and
{zn} using the shape functions [N(η, ζ)] and scaling the geometry of the boundary, the geometry
of the domain is mapped from Cartesian coordinates to local scaled boundary coordinates. This
process is called the scaled boundary coordinate transformation.

x̂(ξ, η, ζ) = ξ[N(η, ζ)]T {xn}, ŷ(ξ, η, ζ) = ξ[N(η, ζ)]T {yn}, ẑ(ξ, η, ζ) = ξ[N(η, ζ)]T {zn}. (1)

The scaled boundary finite-element equation in displacement can be derived using the weighted
residual technique [4] or the principle of virtual work [1]. For 3D problems the scaled boundary
finite-element equation in displacement (2) reads

[E0]ξ2{u(ξ)},ξξ +
(
2[E0] + [E1]T − [E1]

)
ξ{u(ξ)},ξ +

(
[E1]T − [E2]

)
{u(ξ)} = 0, (2)

with the coefficient matrices [E0], [E1] and [E2] (3)-(5). The coefficient matrices are obtained
by numerical integration along the circumferential directions η and ζ and depend on the scaled
boundary transformation of the elastic strains [B1] and [B2] as well as on the elasticity matrix
[D].

[E0] =

∫
S

[B1]T [D][B1]|J | dη dζ (3)

[E1] =

∫
S

[B2]T [D][B1]|J | dη dζ (4)

[E2] =

∫
S

[B2]T [D][B2]|J | dη dζ (5)

The scaled boundary finite-element equation in displacement (2) can be transformed into a
system of first-order ordinary differential equations

ξ{X(ξ)},ξ = −[Z]{X(ξ)}, [Z] =

[
[E0]−1[E1]T − 0.5[I] −[E0]−1

−[E2] + [E1][E0]−1[E1]T −([E1][E0]−1 − 0.5[I])

]
, (6)

where {X(ξ)} contains the nodal displacements {u(ξ)} and nodal forces {q(ξ)} on the boundary,

{X(ξ)} =

{
ξ0.5{u(ξ)}
ξ−0.5{q(ξ)}

}
. (7)



The general solution of the system of first-order ordinary differential equations (6) can be written
as [3],

{X(ξ)} = [Ψ]ξ−[S]{c}, (8)

with [S] being the block diagonalized Schur decomposition of the matrix [Z] containing the
eigenvalues of [Z] on the main diagonal. [Ψ] is a transformation matrix which also results from
the Schur decomposition of the matrix [Z] and {c} are integration constants. Separating the
solutions for the nodal displacements {u(ξ)} and forces {q(ξ)} leads to the expressions

u(ξ) = ξ−0.5
(

[Ψu1]ξ
−[Sn]{c1}+ [Ψu2]ξ

−[Sp]{c2}
)
, (9)

q(ξ) = ξ0.5
(

[Ψq1]ξ
−[Sn]{c1}+ [Ψq2]ξ

−[Sp]{c2}
)
. (10)

In order to describe a thin shell structure, we now introduce the inner and outer boundaries of
the shell structure. The radial coordinate at the inner boundary is denoted as ξ1 and satisfies
0 ≤ ξ1 < 1, depending on the ratio between shell thickness and radius, while the outer boundary
is described by ξ2 = 1. Substituting the values ξ1 and ξ2 into the solutions for the nodal
displacements and forces (9)-(10), these can be expressed as{

{u1}
{u2}

}
=

[
ξ
−0.5[I]
1 [Ψu1]ξ

−[Sn]
1 ξ

−0.5[I]
1 [Ψu2]

[Ψu1] [Ψu2]ξ
[Sp]
1

]{
{c1}
{d2}

}
, (11)

{
{q1}
{q2}

}
=

[
ξ
0.5[I]
1 [Ψq1]ξ

−[Sn]
1 ξ

0.5[I]
1 [Ψq2]

[Ψq1] [Ψq2]ξ
[Sp]
1

]{
{c1}
{d2}

}
. (12)

Due to numerical difficulties when evaluating the expression ξ−[Sp] for large eigenvalues, the
integration constant {c2} is substituted with {d2} = ξ−[Sp]{c2} leading to {c2} = ξ[Sp]{d2}. The
static stiffnes matrix relating nodal displacements and external forces is defined as{

{fi}
{fe}

}
= [K]

{
{ui}
{ue}

}
. (13)

Rearranging (13) and using the relation between internal and external forces {fi} = −{qi}
results in the static stifness matrix

[K] =

[
−ξ0.5[I]1 [Ψq1]ξ

−[Sn]
1 −ξ0.5[I]1 [Ψq2]

[Ψq1] [Ψq2]ξ
[Sp]
1

][
ξ
−0.5[I]
1 [Ψu1]ξ

−[Sn]
1 ξ

−0.5[I]
1 [Ψu2]

[Ψu1] [Ψu2]ξ
[Sp]
1

]−1

. (14)

2 Numerical example

The proposed technique was tested for an axisymmetric spherical zone shell under constant
pressure (see Figure 2). The opening angle is 45◦ with a radius of 1.5m while the thickness
is varied between 0.3m and 0.0001m. Only one-quarter of the shell was modelled while the
remaining three-quarters were taken into account by symmetry boundary conditions. The radial
deflection at the bottom of the shell was calculated. The numerically obtained results are
evaluated with respect to the analytical solution for the membrane state of stress for the present
example. The spherical zone shell was examined with respect to several aspects. The system
was modelled using different methods: e.g. the SBFEM, solid elements as well as linear and
quadric shell elements in Ansys.
Figure 3 shows the relative error with respect to the analytical solution (for the membrane state
of stress) of the radial deflection of the spherical zone shell at the bottom. The system has been
analysed using shell and solid elements in Ansys as well as p- and h-refinement for the SBFEM.



The results demonstrate that the SBFEM solutions based on high-order approximations converge
closer to the analytical solution with fewer degrees of freedom than the elements provided by
Ansys. The strong influence of the thickness on the accuracy of the different methods can be seen
in Figure 4. The Ansys shell elements yield a smaller error than the other methods for higher
thicknesses. This is due to the fact that none of the other approaches is based on the assumption
that stresses in the through-thickness direction are equal to zero, which is an essential part of
the thin shell theory. With reducing thickness this effect is minimized and the other methods
yield smaller errors. However, all the methods used yield less accurate results as the thickness is
decreased further, to a point where its physical reasonability can be questioned. Investigations
of this effect are ongoing. One possible explanation could be that the assumption of small
deformations used in the thin shell theory is no longer applicable for very low thickness-radius
ratios.
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Figure 3. Convergence of radial deflection at the
bottom for t/R = 0.01

10-410-310-210-1

10-6

10-5

10-4

10-3

10-2

10-1

100

101

Figure 4. Convergence of radial deflection at the
bottom for several thicknes-radius ratios

Conclusions

The proposed technique shows promising results by reaching higher accuracy compared to
conventional FEA. Additional studies regarding linear shape functions are ongoing. Further, a
numerical example including bending will be studied in order to investigate membrane locking
since the latter effect mainly occurs when membrane and bending action are coupled.
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