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Micro Abstract
We present a two-scale anisotropic damage model that captures matrix damage and fiber-matrix
interface debonding. Based on the fiber orientation distribution and a Weibull probability distribution
of the interface strength, the damage evolution on the microscale is determined. Within this work
focus lies on the comparison of different matrix damage evolution models. To predict the macroscopic
behavior, a mean field homogenization with the Mori-Tanaka method based on orientation tensors of
second and fourth order is applied.
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Introduction

Due to their high lightweight potential, economical mass-production and excellent formability,
discontinuous fiber reinforced composites are increasingly used for load-carrying components in
the automotive sector. The material class under consideration is SMC (sheet molding compound),
a thermoset matrix reinforced with glass fibers. The orientation distribution of the fibers in this
material is highly heterogeneous and anisotropic in a process sensitive way.

Damage in polymer matrix composites derives from the following three phenomena: matrix (M)
damage, fiber (F) breakage and fiber-matrix interface (I) debonding. Various authors [14], [11],
[6], [2] showed that fiber breakage can be neglected within the contemplation of SMC. Typically
damage evolution initiates at fiber matrix interfaces and propagates between the interfaces in
the form of matrix cracks.

The aim of this work is the development of a micromechanical model which captures matrix
damage and interface debonding to predict the macroscopic behavior of discontinuous fiber rein-
forced polymers. The effective stiffness is obtained by a Mori-Tanaka (MT) [15] homogenization
scheme. The model is based on a purely elasto-damage behavior.

After an overview of the MT mean field homogenization scheme using fiber orientation information,
the focus in this study lies on different matrix damage evolution models. A short outlook on an
interface damage model including a Weibull probability distribution of the interface strength is
given afterwards.

Fiber Orientation Distribution

The microstructural information on how the fibers are oriented within the composite can be
represented approximately by the fiber orientation distribution function (FODF) f(n) which is
defined as

dv

v
(n) = f(n) dS. (1)

Here, dS is the surface element on the unit sphere S := {n ∈ R3 : ‖n‖ = 1}. The FODF describes
the volume fraction dv/v of fibers with orientiation n with respect to all fibers [18], [16]. The



FODF is non-negative, normalized and symmetric

f(n) ≥ 0,

∫
S
f(n) dS = 1, f(n) = f(−n), ∀n ∈ S. (2)

An empirical representation of the FODF, based on m different directions nβ with corresponding
weights c (nβ), is given through

f(n) =
m∑
β=1

c (nβ) δ(n,nβ), (3)

with δ(n,nβ) being a Dirac distribution. The weights c (nβ) can be interpreted as the fraction of
fibers oriented in the direction nβ . Based on the FODF, it is possible to derive fiber orientation
tensors (FOT) [1, 12]. The so called fabric tensors of 2nd, 4th and kth order can be calculated as

N =

∫
S
f(n)n⊗2 dS, N =

∫
S
f(n)n⊗4 dS, N〈k〉 =

∫
S
f(n)n⊗k dS, (4)

with the abbreviations

n⊗2 = n⊗ n, n⊗4 = n⊗ n⊗ n⊗ n, n⊗k = n⊗ n⊗ · · · ⊗ n︸ ︷︷ ︸
k times

. (5)

For an empirical FODF, according to equation (3), this leads to

N〈k〉 =
m∑
β=1

c (nβ)n⊗kβ . (6)

Further representations of FOTs can, e.g., be found in [12].

Effective Linear Elastic Behavior

The effective stiffness C̄ couples the effective stress σ̄ and the effective strain ε̄ as

σ̄ = C̄[ε̄]. (7)

Based on the MT assumption that the fiber strain localization ASIP
F relates the phase-averaged

fiber (F) strain εF to the phase-averaged matrix (M) strain εM in the way that εF = ASIP
F [εM],

the effective stiffness then is calcuted via

C̄ = CM + cF〈(CF − CM)AMT
F 〉F. (8)

Hereby, CM, CF and cF are the matrix and fiber stiffness and the fiber volume fraction, respectively.
The fiber strain localization ASIP

F based on the single inclusion problem (SIP) formulated by
Eshelby [5] is

ASIP
F =

(
IS + P0 (CF − CM)

)−1
, (9)

with IS being the 4th order identity on symmetric tensors. An explicit formulation of the
symmetric polarization tensor P0 can be found in [3]. Furthermore, the MT fiber strain
localization AMT

F and matrix strain localization AMT
M are

AMT
F = ASIP

F AMT
M , AMT

M =
(
cMIS + cF〈ASIP

F 〉F
)−1

. (10)

The matrix volume fraction is given by cM = 1− cF. In case of a transversally isotropic and
symmetric tensor A with symmetry axis in e1-direction, an analytical formulation of the
orientation average over all fibers 〈A〉F in dependence of a 2nd and 4th order FOT, N and N, is
given by [1] as

〈A〉F = b1N + b2(N ⊗ I + I ⊗N)

+ b3(N�I + (N�I)TR + (I�N)TH + (I�N)TR)

+ b4I ⊗ I + b5IS. (11)

The coefficients b1 to b5 are specific parameters corresponding to A.



Orientation Dependent Stress Localization

The localized phase-averaged stresses within the matrix σM and the fibers σF can be calculated
with the MT stress localization tensors BMT

M and BMT
F

σM = BMT
M [σ], σF = BMT

F [σ]. (12)

Hereby, we have

BMT
M =

(
cMIS + cF〈BSIP

F 〉F
)−1

, BMT
F = 〈BSIP

F 〉FBMT
M . (13)

The fiber stress localization tensor in the single inclusion problem BSIP
F [5] is given by

BSIP
F =

(
IS + CM

(
IS − P0CM

) (
C−1F − C−1M

))−1
, (14)

with the inclusion being oriented in e1-direction. According to [4], the fiber stress σ∠F (n) in any
fiber orientation n can be calculated from the macroscopic stress σ̄ using

σ∠F (n) = BSIP∠
F (n)BMT

M [σ] with BSIP∠
F (n) = Q(n) ? BSIP

F , Q ∈ Orth. (15)

Matrix Damage

The matrix is modeled based on its phase-averaged behavior. A comparison of different matrix
damage evolution models is conducted. A rate dependent isotropic damage model based on a
power law evolution is compared to a rate independent anisotropic damage model based on an
energy formulation developed by Govindjee et al. [9].

Isotropic Damage Model

Based on a scalar damage variable α ∈ [0, 1) [17] and the initial undamaged stiffness C0, the
elastic storage energy is introduced as

W (ε, α) =
1

2
(1− α)ε · C0[ε], (16)

which leads to a damaged stiffness C of

C = (1− α)C0. (17)

The damage variable α can be interpreted as crack density in an isotropic matrix (see, e.g., [10]).
A power law ansatz for the damage evolution based on the conjugated strain energy β is assumed

α̇ = α̇0

(
β

β0

)m
= α̇0

(
ε · C0[ε]

2β0

)m
= α̇0

(
σ · S0[σ]

2β0(1− α)2

)m
. (18)

Hereby, α̇0, β0 and m are material parameters and S0 = C−10 is the compliance tensor. The
model leads to a strain rate dependent behavior of the damage and stress evolution under
unaxial loading, as depicted in Fig. 1. The damage variable α increases exponentially, while the
stress-strain behavior intrinsically shows a softening behavior due to equation (17). Accordingly,
the softening behavior is smooth.

Anisotropic Damage Model

An anisotropic damage evolution model according to Govindjee et al. [9] based on three damage
functions Φk(β,σ) is examined. The elastic storage energy is superposed of an elastic energy
and an energy p(α) due to the accumulated damage α given by

W (ε,C, α) =
1

2
ε · C[ε] + p(α), (19)
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Figure 1. Rate dependent material behavior - isotropic damage law

with the stiffness C itself being considered an internal variable. Hereby, the evolution of the
accumulated damage α and the compliance S are

α̇ =
3∑

k=1

γk (∂βΦk) and Ṡ =
3∑

k=1

γk

(
∂σΦk ⊗ ∂σΦk

∂σΦk · σ

)
. (20)

The conjugated driving force β is defined as

β (α) = −∂W (ε,C, α)

∂α
= −∂p(α)

∂α
, (21)

and describes the material behavior under loading. The function β (α) governs the damage
behavior and can be used to model a strain hardening or a strain softening behavior. Due to
the ill-posedness of the boundary value problem, a viscous regularization is necessary when
considering strain softening (see, e.g., [8]). Describing the latter by β (α) = gt (1− exp (−Hα)),
with gt and H being material parameters, leads to a behavior under uniaxial loading as shown
in Fig. 2. Theoretically, the accumulated damage variable α ∈ [0,∞) can take any non-negative
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Figure 2. Rate independent strain softening material behavior - anisotropic damage law

value, but is - depending on the chosen material parameters - usually quite small (as can be
seen in Fig.2(a)). Unlike the discussed isotropic damage model, the evolution of α within the
anisotropic damage model does not follow an exponential course. Furthermore, in contrast to the
isotropic damage model, where no seperate softening law has to be included, in the anisotropic
damage model the softening behavior is triggered through a maximal bearable stress gt. As soon
as damage occurs, the stress-strain curve exponentially decreases in a non-differentiable way.
Depending on the number of employed damage functions Φk, the model behavior can be further
adjusted to the behavior of the matrix material.



Young’s Modulus Evolution

Young’s Modulus can be evaluated in any arbitrary direction n parametrized as polar coordinates
by two angles ϑ and ϕ. A depiction of the directional Young’s Modulus evolution within the
x− y−plane (ϑ = π/2), with x being the abscissa and unaxial loading axis can be seen in Fig. 3.
Both planar plots are rotationally symmetric with respect to the x−axis. The isotropic law (a)
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Figure 3. Young’s Modulus plot x− y−plane, uniaxial loading in x−direction

predicts an isotropic reduction of the stiffness independent of the actual loading case, whereas
the stiffness reduction of the anisotropic law (b) is highest in loading direction. Perpendicular to
the loading direction stiffness remains constant. Due to the occurence of damage, the material
behavior changes therefore, from isotropic to transversally isotropic.

Interface Damage

Using the fiber orientation information provided by the FODF or FOT respectively, an equivalent
interface stress in each fiber direction n can be calculated (see, e.g., [7]). Analogously to [13],
the interface strength is assumed to be Weibull distributed. A comparison of the fraction of
fibers in a specific direction n and the probability of fibers surviving the current load, yields a
damage evolution criterion.

Conclusions

To describe the matrix behavior, various damage evolution models are available. An adaption
to catch strain softening as well as strain hardening has already been implemented. Viscous
regularization is applied when necessary. The interface model needs to capture the stress driven
damage evolution due to an exceed of the interface strength depending on the loading.

In the development of the damage models on the microscale, it is necessary to ensure that the
basic assumptions of the considered MT homogenization scheme are not violated. A suitable
combination of a matrix and an interface damage model is necessary in order to correctly and
efficiently predict the macroscopic behavior.
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