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Micro Abstract
Macroscopic properties of materials, e.g. the permeability of a filter or the mechanical strength of a
fiber composite, are highly influenced by the microstructure. Models from stochastic geometry are
valuable tools for studying these relations as they allow for the generation of virtual microstructures
with controlled characteristics. The talk presents models for different material classes and explains
how to fit the models based on geometric characteristics estimated from 3D image data.
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Introduction

A key element in the design of modern high performance materials is the understanding of the
influence of the material’s microstructure geometry on its macroscopic properties. Quantitative
analysis of 3D image data provides valuable information on geometric characteristics such as
distributions of cell or particle sizes, the specific surface area or the orientation distribution
of fibres in composite materials. In a second step, fitting a stochastic model to the observed
characteristics allows to modify the microstructure by generating model realizations with altered
parameters, e.g. higher fibre content, different fibre cross sections or variations in the fibre
orientation distribution. Simulation of macroscopic properties in these ’virtual samples’ then
helps to predict how certain changes of the microstructure will influence the performance of the
material. These findings can then be used to optimize materials for certain applications.

A schematic representation of the cycle of virtual material design is given in Figure 1.

1 Stochastic geometry models

Random closed sets from stochastic geometry provide the framework for defining models for the
microscopically heterogeneous geometric microstructure of materials. In the following, we briefly
introduce some basic model classes. For rigorous definitions we refer to the textbooks [2, 9].

1.1 Point processes

Point processes are a key ingredient of many stochastic geometry models. Briefly speaking, a
point process is a collection of random locations in space. It is called stationary if its distribution
is invariant under translations. If the distribution is invariant w.r.t. rotations, the process is
called isotropic.

One of the main characteristics of a point process is the intensity measure Λ. For a Borel
set B, Λ(B) is the expected number of points in B. For stationary point processes, we have
Λ(B) = λV (B), where V (B) is the volume of B and the constant λ > 0, the intensity of the
point process, is the expected number of points in a unit volume.

The most important point process model is the Poisson process which is used as the reference
model for ’complete spatial randomness’, i.e. no interaction between the points. The name



Figure 1. Sketch of virtual material design based on stochastic microstructure modelling: observe a real
microstructure through image data (grey), estimate geometric characteristics (histogram), fit a stochastic
geometry model (red), simulate materials properties of interest (blue-to-red scale). Generate altered
microstructures by modification of model parameters (pale red) and investigate the influence on the simulated
properties. Repeat until satisfactory performance is obtained.

Poisson process comes from the fact that the number of points in a bounded set B follows
a Poisson distribution with parameter Λ(B). There is a variety of additional models which
allow for the modelling of interaction (repulsion or attraction/clustering) between the points.
The statistical analysis of random point patterns, various models, and methods for parameter
estimation are discussed in [1, 4].

1.2 Particle processes

In a more general setting, we can consider point processes whose points are no longer locations
but random compact sets in Rd, e.g. balls, cylinders or polytopes. Such processes are called
particle processes. A stationary particle process can also be interpreted as marked point process
by splitting up the particles into centre locations x ∈ Rd and compact sets C having their centre
in the origin. In this case, the intensity measure can be written as Λ = Λ0 ⊗Q where Λ0 is the
intensity measure of the point process of centre locations and Q is the distribution of the typical
particle which determines the particle shape.

One important example is the Boolean model where centre points form a Poisson process and
particle shapes are drawn independently and identically distributed from the distribution Q
independently of the locations. Consequently, particles can overlap in this model. In many
situations, systems of non-overlapping (or hard) particles are of interest. Such systems can be
generated using the Random Sequential Adsorption (RSA) approach. This algorithm is based
on sequentially adding particles to the observation window such that overlaps are avoided. To
achieve higher packing densities, collective rearrangement algorithms such as the force biased
algorithm [5] can be applied. For examples see Figure 2.

1.3 Random tessellations

Random tessellations are special particle processes where the particles form a division of Rd

into bounded cells whose interiors do not intersect. Maybe the most well-known model is the
Voronoi tessellation which is defined as follows. Let φ be a locally finite set of points in Rd, e.g.
a realisation of a point process Φ. Then the Voronoi cell of x ∈ φ is defined as

C(x) = {z ∈ Rd : ||x− z|| ≤ ||y − z|| for all y ∈ φ}, (1)

i.e. it consists of all points in Rd having x as nearest neighour in φ.

The Laguerre tessellation is a weighted generalization of the Voronoi model. To each point x ∈ φ
we assign a positive weight r > 0 such that the pair (x, r) can be interpreted as a sphere with



Figure 2. From left to right: Fibre systems generated by a Boolean model (overlapping fibres) and an RSA
process (non-overlapping fibres). 2D sections of a Poisson Voronoi tessellation and a Laguerre tessellation
generated by a dense packing of balls. Note the differences in cell shape.

radius r centred in x. The Laguerre cell of (x, r) is

C(x, r) = {z ∈ Rd : ||x− z||2 − r2 ≤ ||y − z|| − s2 for all (y, s) ∈ φ}. (2)

Some examples are shown in Figure 2. As in the case of more general particle processes, model
fitting is based on observing geometric characteristics of the typical cell of the tessellation, see [7].

2 Geometric characterisation and parameter estimation

To determine the distribution Q of the typical particle of a particle process, geometric char-
acteristics for the size, orientation and topology of the particles can be considered. A basic
set of characteristics are the intrinsic volumes. In R3, these are four characteristics, namely –
up to constant factors – the volume V = V3, the surface area S = 2V2, the integral of mean
curvature M = πV1, and the Euler number χ = V0, see e. g. [2]. For convex and compact sets,
the integral of mean curvature is up to a constant the mean width M = 2πb̄ – a measure for the
particle diameter defined as the distance of two parallel planes enclosing the particle, averaged
w.r.t. rotation. Intrinsic volumes can efficiently be estimated from binary image data using the
approach described in [6].

Besides the analysis of separate particles, also analysing their union, e.g. the fibre system in a
glass fibre material, may provide valuable information. In this case, the densities of the intrinsic
volumes are considered. In practice, they are computed as

VV,k(Ξ) =
Vk(Ξ ∩W )

Vd(W )
, k = 0, . . . , d, (3)

where W is the observation window and Ξ is the random closed set of interest.

In R3 the densities of the intrinsic volumes are the volume density VV = VV,3, the surface area
density (or specific surface area) SV = 2VV,2, the density of the integral of mean curvature
MV = πVV,1, and the density of the Euler number χV = VV,0.

For a stationary Boolean model, the mean intrinsic volumes of the typical particle and the
intensity λ can be computed from the intrinsic volume densities using the Miles formulas [9].
For systems of non-overlapping particles, one has

VV = λV̄ , SV = λS̄,MV = 2πλ¯̄b, χV = λ, (4)

where V̄ , S̄, and ¯̄b are the means of the volume, surface area, and mean width of the typical
particle, respectively.

For fibre systems, the fibre orientation distribution is of additional interest. There are several
approaches for determining the distribution of the local fibre orientation, i.e. the orientation in
the typical fibre point, see [10].



Figure 3. Volume renderings of CT images of real materials and the corresponding models. Left: A glass
fibre composite and the fitted RSA model. The visualised volume is 3003 pixels which corresponds to a cube
of edge length 0.765 mm. Right: A closed PMI foam and the fitted Laguerre tessellation. The visualised
volume is 6003 pixels which corresponds to a cube of edge length 1.6 mm.

3 Application examples

In the following, we will discuss two application examples: modelling of a glass fibre reinforced
polymer by a system of random cylinders and modelling of a closed cell polymer foam by a
random Laguerre tessellation. Details on the materials and the model fit can be found in [8].

3.1 Fiber composite

As a first example we consider a sample of glass fibre reinforced composite with relatively low
fibre content (15 % by weight, 7.3 % by volume). Model fitting is based on a µCT image of the
material consisting of 1660× 1660× 1211 pixels. The pixel edge length is 2.5 µm.

The image was binarised to obtain a volume fraction of VV = 7.3% which is the nominal value
provided by the producer of the material. The fibre length distribution was modelled by a
lognormal distribution with a mean of 250 µm and a standard deviation of 189 µm. Estimates
for the (constant) fibre radius R and the intensity λ are obtained from the Equations (4) as
R̂ = 6.1 µm and λ̂ = 2465.1/mm3. The fibre direction distribution is modelled by the parametric
distribution model presented in [3]. The concentration parameter is chosen as β = 6 which
yields a girdle distribution, i.e. a distribution concentrated in a plane. The normal vector of this
plane is estimated as (−0.017, 0.0033, 0.9999)T resulting in fibres oriented along the xy-plane.
Fibers are placed in the volume using the RSA approach introduced above. Visualisations of the
original material and a model realisation are shown in Figure 3 (left).

3.2 Closed foam

Our second example is a sample of a Rohacell closed cell polymer foam. We analyse a µCT
image of size 1200× 1100× 1300 pixels with a pixel edge length of 2.7 µm. As cell walls in this
material are thin compared to the cell size, not all walls are sufficiently resolved in the CT image.
This results in some holes in cell walls in the segmented image (see Figure 3). By application
of the cell reconstruction method based on the watershed transform presented in [6], the cells
can be separated and analysed. The estimated cell intensity in the sample is λ̂ = 47.61/mm3.
The cell system is modelled by a Laguerre tessellation generated by a dense packing of spheres
with gamma distributed volumes. For model fitting, moments of the distribution of cell volume,
surface area, mean width, and number of facets are considered, see [7] for details. Visualisations
of the original material and a model realisation are shown in Figure 3 (right).
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