
Proceedings of the 7th GACM Colloquium on Computational Mechanics
for Young Scientists from Academia and Industry

October 11-13, 2017 in Stuttgart, Germany

A gradient-extended elastic isotropic damage
model considering crack-closure

Marek Fassin1*, Stephan Wulfinghoff1 and Stefanie Reese1

Micro Abstract
In this work an elastic isotropic damage model considering crack-closure and irreversible strains is
discussed. After having introduced the model equations of the local model, results of a simple uniaxial
strain controlled test on Gauss-point level are presented. Subsequently, the gradient extension of the
model (micromorphic approach) is summarized briefly. Finally, the model’s properties and robustness
are demonstrated by means of a finite element computation of a single edge-notched plate under shear
loading, where an adaptive mesh refinement is utilized.
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1 Model equations

1.1 Local model

In this work an elastic isotropic damage model considering crack-closure and irreversible strains
is discussed. For the numerical implementation of an anisotropic damage model coupled to
plasticity we refer to [3, 9]. For the discussion about damage growth for anisotropic damage
models, see [10]. The here presented isotropic damage model is based on a Helmholtz free energy
which consists of three parts

ψ = ψe(ε̂, D) + ψh(ξd) + ψp(D) , (1)

namely the elastic part, the damage hardening part and a penalty part, which ensures that the
isotropic damage variable D does not exceed the value of 1. In order to model irreversible strains
without additional dissipation, see [1], the shifted strain tensor ε̂ = ε− ε0 was introduced, where
ε0 is the strain when crack-closure starts to be active (cf. Figure 1). Furthermore, the split of
the strain in positive and negative parts is needed for the incorporation of crack-closure:

ε̂+ =
∑
i∈A

ε̂ini ⊗ ni =
∑
i∈A

ε̂iN i, A = {i : ε̂i ≥ 0}, tr+(ε̂) =
〈
tr(ε̂)

〉
, (2)

ε̂− =
∑
i∈B

ε̂ini ⊗ ni =
∑
i∈B

ε̂iN i, B = {i : ε̂i < 0}, tr−(ε̂) = −
〈
−tr(ε̂)

〉
, (3)

where ε̂i and ni are the eigenvalues and eigenvectors of the strain tensor ε̂, respectively. Further,
the function

〈
x
〉
= (x+ |x|)/2 denotes the Macaulay brackets. The elastic part of the free energy

is split into a positive part ψ+
e (corresponding to tension), where the damage is fully active and

a negative part ψ−e (corresponding to compression) which is damaged in dependence on the



Figure 1. Schematic stress-strain diagram for loading and unloading.

crack-closure parameter η which can take values from 0 to 1:

ψe(ε̂, D) = 1
2(1−D)nλ

[
tr+(ε̂)

]2
+ (1−D)nµ ε̂+ : ε̂+︸ ︷︷ ︸

ψ+
e

+ 1
2(1− (1− η)D)nλ

[
tr−(ε̂)

]2
+ (1− (1− η)D)nµ ε̂− : ε̂−︸ ︷︷ ︸

ψ−
e

+ λtr(ε̂)tr(ε0) + 2µε̂ : ε0︸ ︷︷ ︸
ψ0

,

(4)

For η = 0 crack-closure is deactivated, for η = 1 crack-closure is fully active, everything in
between is partially crack-closure. The energy term ψ0 is only needed to ensure that the stress
in the undeformed configuration is zero. Here, λ and µ are the Lamé parameters and n is an
exponent which is either 1 or 2. The quadratic hardening energy with the hardening parameter
K1 and the penalty energy are given below as

ψh(ξd) = 1
2K1ξ

2
d , (5)

ψp = 1
2Hp

〈
D −D0

〉2
. (6)

By choosing a high penalty parameter Hp (e.g. 108) and D0 close to one (e.g. 0.995) it is
ensured that the damage variable D does not exceed the value of 1. The stress can be derived in
the standard way as

σ =
∂ψ

∂ε
= (1−D)nλ

[
tr+(ε̂)

]
I + 2(1−D)nµ ε̂+︸ ︷︷ ︸
σ+

+ (1− (1− η)D)nλ
[
tr−(ε̂)

]
I + 2(1− (1− η)D)nµ ε̂−︸ ︷︷ ︸
σ−

+ λtr(ε0)I + 2µε0︸ ︷︷ ︸
σ0

(7)

The thermodynamic conjugate forces, namely the damage driving force Y and the damage
hardening variable ξd, are defined as

Y = − ∂ψ
∂D

= 1
2n(1−D)n−1λ

[
tr+(ε̂)

]2
+ n(1−D)n−1µ ε̂+ : ε̂+︸ ︷︷ ︸

Y +
e

− Hp

〈
D −D0

〉︸ ︷︷ ︸
Yp

+ 1
2n(1− (1− η)D)n−1(1− η)λ

[
tr−(ε̂)

]2
+ n(1− (1− η)D)n−1(1− η)µ ε̂− : ε̂−︸ ︷︷ ︸

Y −
e

(8)



qd =
∂ψ

∂ξd
= K1ξd (9)

Introducing an initial damage threshold Y0 the damage criterion reads

Φd = Y − (Y0 + qd) ≤ 0 . (10)

Following the associative concept the evolution equations are given as follows

Ḋ = λ̇d
∂Φd

∂Y
= λ̇d, ξ̇d = −λ̇d

∂Φd

∂qd
= λ̇d, (11)

with the Kuhn Tucker conditions being

λ̇d ≥ 0, φd ≤ 0, λ̇dΦd = 0 . (12)

The secant stiffness of the material (damage state is frozen) can be calculated by

∂σ

∂ε
= (1−D)nλHf (tr(ε̂))I ⊗ I + (1−D)n(Cµ,1 + Cµ,2)︸ ︷︷ ︸

(∂σ/∂ε)+

+ (1− (1− η)D)nλHf (−tr(ε̂))I ⊗ I + (1− (1− η)D)n(Cµ,1 + Cµ,2)︸ ︷︷ ︸
(∂σ/∂ε)−

,
(13)

with

Cµ,1 = 2µ
∑
i∈A

Is : (N i ⊗N i) , N i = ni ⊗ ni, N ij = ni ⊗ nj , N ji = nj ⊗ ni , (14)

Cµ,2 = 2µ
∑

i∈A,j 6=i

ε̂i
ε̂i − ε̂j

Is :

[
1

2
(N ij ⊗N ij +N ij ⊗N ji +N ji ⊗N ij +N ji ⊗N ji)

]
, (15)

where the symmetric fourth-order identity tensor is defined as Is = 1
2(δikδjl+δilδjk)ei⊗ej⊗ek⊗el.

1.2 Uniaxial strain-controlled test on Gauss-point level

In order to check the influence of the crack-closure parameter η as well as the exponent n, a
uniaxial strain-controlled test in x-direction (εxx 6= 0, εyy=εzz=0) is performed. This test includes
loading in tension until εxx = 1% and subsequent unloading and loading in compression (εxx < 0)
until failure. The following material parameters were used: λ = 115384N/mm2, µ = 76923N/mm2,
Y0 = 0.1N/mm2,K1 = 20N/mm2, ε0 = 0. Figure 2 shows the stress-strain curves for different

(a) n = 1 (strain equivalence). (b) n = 2 (energy equivalence).

Figure 2. Uniaxial strain-controlled test with loading and unloading for different crack-closure parameters η.



values of η varying between 0 and 1. Figure 2a depicts the results for n = 1 which means a
linear degradation of the elastic free energy by the factor (1−D). This approach is equivalent
to what is commonly known as hypothesis of strain equivalence, see e.g. [5]. In the loading
regime of tension no differences between the stress-strain curves for the different η can be
observed. After unloading the curves branch at the the origin since crack-closure becomes active
in different extend. For η = 0 no crack-closure is observed and the curve does not change its
slope at the origin. It continues with an elastic part and then starts to damage again in the
compression regime (later and more slowly than for η = 0) until complete failure occurs at
σxx = 0. For η = 0.5 crack-closure is taken into account with 50 %. At the transition between
tension and compression (origin) the stiffness increases jumpwise. The curve continues with
an elastic part until damage in the compression regime is occuring. The final failure (D=1)
takes place at nonzero stress because of the crack-closure parameter η being not equal to zero.
For η = 1 crack-closure is completely active. This means that at the transition between tension
and compression (origin) the initial stiffness is recovered. Furthermore, damage will not evolve
under compression which means that no failure under compression occurs. Figure 2b shows the
results for n = 2 which means a quadratic degradation of the elastic free energy by the factor
(1−D)2. This approach is commonly known in the literature as hypothesis of elastic energy
equivalence, see e.g. [2]. The difference compared to the first approach with n = 1 becomes
apparent for the tension as well as for the compression regime. The (1−D)2 degradation leads
to a slower damage evolution which results into a stress-strain curve which approaches zero with
a horizontal tangent (see dotted lines in the tension regimes for a continued loading as well as
loading in the compression regime for η = 0). As before for n = 1, crack-closure begins at the
origin and the curves branch due to the different values/extends of crack-closure.

1.3 Gradient extension (micromorphic approach)

It is commonly known that the results of finite element computations are highly mesh dependent
as soon as softening/localization takes place since the dissipation tends to zero for decreasing
element size. To overcome this phenomenon a gradient extension is utilized which ensures
that damage cannot localize anymore in only one element (or element row). In this work, the
framework of micromorphic media according to Forest [4] is applied and implemented in analogy
to Wulfinghoff and Böhlke [8]. The micromorphic approach bases on the micromorphic balance
equation in the domain Ω and corresponding Neumann boundary conditions on the boundary Γ

div b− p = 0 in Ω

b · n = 0 on Γ
(16)

Here, b and p denote generalized stresses and n the normal on the boundary. In order to
incorporate this new balance equation the free energy of the local model from Equation 1 has to
be extended by an additional micromorphic energy

ψext = ψ + ψmicr , (17)

which consists of two parts

ψmicr =
A

2
∇Dχ · ∇Dχ +

Hχ

2
(Dχ −D)2 . (18)

The first part takes into account the energy stored by the gradient of the micromorphic field
variable Dχ, the second part acts as a penalty energy (with penalty parameter Hχ) which
forces the micromorphic damage variable Dχ to be as close as possible to the “local” damage
variable D. Further, the material parameter A can be expressed by A = Hχl

2, where l is the
so-called internal length parameter. With the additionally introduced micromorphic energy the
expressions for the generalized stresses can then be derived:

b =
∂ψmicr
∂∇Dχ

= A∇Dχ, p =
∂ψmicr
∂Dχ

= Hχ(Dχ −D) . (19)



Figure 3. Single edge-notched plate:
geometry, boundary conditions and loading.

Figure 4. Force displacement curves for the six
investigated meshes.

2 Numerical example

As numerical example a 2D plane strain finite element problem is considered in which a quadratic
plate with a thickness of 1 mm, a side length of 100 mm and a sharp 65 mm long horizontal notch
(zero width) is loaded under shear (see Figure 3). The loading is defined by the horizontal displace-
ment ux which is prescribed at all nodes of the top and the bottom edge of the plate. The following
material parameters are used: λ = 57692N/mm2, µ = 38462N/mm2, n = 2, Y0 = 4.0N/mm2,
K1 = 20N/mm2, ε0 = 0, η = 1 (crack-closure is fully active). The additional micromorphic
material parameters are chosen as Hχ = 106N/mm2 and l = 0.02mm. In order to overcome
snap-back situations an artificial viscosity with the value of θ = 0.01N/(mm2s) is utilized.
Figure 4 shows the force-displacement curves for the six investigated meshes, where the reaction
force plotted on the ordinate is the sum of the reaction forces in x-direction of all nodes at the
top edge. An adaptive mesh refinement strategy based on the value of the damage variable
was applied. Figure 5 shows three of the six investigated meshes. The mesh with 800 elements
(cf. Figure 5a) was the initial mesh on which the first remeshing was based. Further mesh
refinement was then based on the finer meshes respectively. As the force-displacement curves
in Figure 4 show, mesh convergence could be achieved for the mesh with 12278 elements. The
three finest meshes (6316, 8228 and 12278 elements) are already very close to each other and
only differ in the post peak behaviour after the sudden drop between point A and B. This drop
in the force-displacement curve can be explained by the instable crack propagation between
points A and B. Afterwards stable crack propagation is observed. Figure 6 illustrates the crack
propagation observed in this example by means of the damage plots at points A, B and C for
the mesh with 12278 elements. It should be mentioned that without considering crack-closure
the damage contour plots would be symmetric with respect to the middle axis of the plate. By
taking into account crack-closure (here, η = 1) the crack only evolves in the lower half of the

(a) 800 elements. (b) 3734 elements. (c) 12278 elements.

Figure 5. Meshes used for the computations.



plate which is reasonable since the upper half of the plate is dominated by compression. Similar
results have been obtained by the group of Prof. Miehe using a phase field modeling of fracture
approach (see, e.g. [6, 7]).

(a) point A. (b) point B. (c) point C.

Figure 6. Damage contour plots of the crack propagation at points A,B and C in Figure 4.

Conclusions

In the present work, an elastic isotropic damage model taking into account crack-closure and
irreversible strains was presented. The influence of crack-closure and the differences between
strain equivalence and elastic energy equivalence were shown with simple uniaxial strain-controlled
Gauss-point studies. In order to overcome the pathological mesh dependency known for this
class of material models a gradient extension (micromorphic approach) was introduced and
the corresponding equations were summarized briefly. In the end the model demonstrated its
capability to reproduce the realistic crack path for a single edge-notched plate under shear loading.
Furthermore, the employed adaptive mesh strategy proved its functionality and robustness.
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