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Micro Abstract
Directional dependency of the fracture resistance, which is observed for a wide range of materials,
requires the integration of anisotropic behavior in approaches for crack growth simulations. The
gradient term in the energy functional of a phase field model for isotropic brittle fracture is enhanced
accounting for an anisotropic material resistance. Results of crack path simulations for different
samples are presented to show the accuracy of the proposed model.
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Introduction

Anisotropy of materials is an important property, which has to be considered within the devel-
opment and realization of engineering structures. The directional dependency of mechanical
properties can either be desired for an optimization of a specific load path, which is achieved
e.g. by changing the fibre orientation of a composite, or occur as a consequence of several
manufacturing processes like rolling or extruding. A further differentiation of the anisotropic
behaviour of a material has to be made between the elastic anisotropy and the anisotropy of
the fracture resistance. Whereas the elastic anisotropy effects the reaction of the material to
a certain load and is responsible – with view on continuum mechanics – for additional elastic
constants of the elasticity tensor, the anisotropy of the fracture resistance influences the path of
a growing crack caused by external loads.
Phase field fracture models provide a convenient framework for the prediction of crack paths.
Within these models, an additional field variable is introduced to represent the crack field. This
field is an approximation of the sharp crack with a continuous transition zone between broken
and unbroken material. The evolution equation for the crack field is based on Bourdin’s [3]
regularized formulation of the variational model for brittle fracture proposed by Francfort and
Marigo [5]. This model addresses Griffith’s theory, in which a crack propagates once the energy
release per unit crack surface area is balanced by the increase of surface energy caused by
infinitesimal crack growth. As an extension, it is postulated that a global minimum of the total
energy, which is the sum of bulk and surface energies, always appears within a loaded sample.A
comparison of several phase field fracture models is provided in [1].
Since the surface part of the total energy depends on the critical energy release rate Gc and
hence on a material constant, anisotropic crack growth can be included by assuming Gc to be a
function of the crack propagation direction. This approach for anisotropic material behaviour
was introduced by Hakim and Karma [7] and by Li et al. [11] in the context of phase field models.
Another way is to leave Gc constant and rather modify the gradient term of the surface part in
the energy functional. This second approach is studied within this work.



1 Directional fracture resistance

The directional dependency of the resistance against brittle crack extension in metallic materials
is effected by the forming of textures during manufacturing. An elongation of the grains under
a certain direction arises as a consequence of rolling or extrusion processes (see e.g. [9]). Two
different kinds of crack propagation are characterized in the context of brittle fracture. Dependent
on the relative strength of the grain boundaries, a crack grows either along these boundaries
(intercrystalline) or through the grains (transcrystalline). However, there is a preferred direction
of the crack path for both types since the energy needed for crack extension is minimized if less
grain boundaries have to be passed in the case of transcrystalline crack growth, or by choosing
the less tortuous path in case of intercrystalline growth (see e.g. [8]).

2 Phase field model for anisotropic crack growth

2.1 Isotropic phase field model

The basic model used for the performed simulations was proposed by Kuhn and Müller in [10].
This phase field fracture model contains a regularized expression for the total energy introduced
by Bourdin [3]. Beside the bulk part, this total energy consists of a surface term accounting for
the energy required for the irreversible processes associated with the formation of a crack.
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The field variable representing a crack in this model is s, which takes the value 1 for intact
material and 0 in case of a crack. The first term in the integral of (1) is the strain energy density
ψe, in which ε is the linearized strain tensor and C is the possibly anisotropic stiffness tensor.
The : operator denotes the double dot product of two second order tensors. The decrease of
strain energy coming along with the loss of stiffness in non intact material is modelled by the
degradation function g(s). In the original formulation by Bourdin a quadratic function g(s) = s2

is used. As an alternative a cubic degradation function was introduced by Borden et al. in [2].
The parameter η ensures a residual stiffness in case of s = 0 to avoid numerical difficulties. The
crack energy density ψc is the product of the critical energy release rate Gc and a crack density
functional, where the parameter ε controls the width of the smooth transition zone between
a crack and the undamaged material. To obtain the time evolution of the crack field s, the
generalized Ginzburg-Landau equation (see e.g. [6]) with (1) as energy functional is applied.
With the functional derivative δψ/δs the evolution equation for s is
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In this equation, the scalar mobility M acts as a control parameter to approach the state of
equilibrium, specified by δψ/δs = 0. Accordingly, quasi static conditions are approximated by
M approaching infinity.

2.2 Extension to model anisotropy of the fracture resistance

The energy density needed within the process zone for the formation of a crack is a material
dependent property and is quantified by the critical energy release rate Gc. A common way to
introduce anisotropic behaviour related to a directional dependency of the fracture resistance
is to assume Gc as function of the potential crack growth direction, i.e. Gc = Gc(ϕ), where ϕ
indicates the direction with respect to a specified axis. This approach has been studied within [7]
and [11] in the context of phase field models for fracture. However, a simple alternative is to
leave Gc constant and introduce additional material parameters accounting for the anisotropy.



The crack density functional of (1) consists of a local part and a non-local term proportional to
the squared norm of the spatial gradient of the crack field variable s. This squared norm can be
rewritten as

|∇s|2 = ∇s · (1∇s), (3)

where 1 is the second order identity tensor and · denotes the dot product of two vectors. The
key of the modification implemented within this work is the substitution of the identity in (3)
by a diagonal tensor Φ of the form:

Φ =

(
1 + α 0

0 1− α

)
(4)

for the two-dimensional case. Note that by the definition above tr(Φ) = tr(1) = 2. With
this minor modification, the energy added by crack extension is now weighted for each spatial
direction. To satisfy material properties as outlined in Section 1, a direction prone to crack
extension can now be specified by means of the parameter α. With the modified gradient term
the evolution equation (2) for the crack field s becomes
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3 Numerical examples

3.1 Inclined crack under uniaxial tensional load

As a first numerical example, the extension of an inclined crack under uniaxial tension is simulated
(all simulations performed with dimensionless quantities). The load case, which is schematically
shown in Fig. 1(a) causes a mixed mode loading at the initial crack tip. Accordingly, the crack
deflection angle ϕ is a function of the initial crack angel γ.
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Figure 1. Load case (a) and contour plots of the crack field obtained by simulations (ν = 0.25,
ε = 0.005, M = 10) for different values of the parameter α: (b) α = 0, (c) α = 0.4, (d) α = −0.4



For this simulation γ was set to 45◦. The crack field obtained without weighting of the gradient
components (Fig. 1(b)) reveals a deflection angle of about 35◦. Figures 1(c) and (d) show the
crack field obtained by simulations, where the parameter α was set to 0.4 and −0.4, respectively.
The contour plot of Fig. 1(c) shows a nearly horizontal crack extension (ϕ ≈ 42◦), which is
caused by higher costs of gradients in x-direction. On the contrary, Fig. 1(d) reveals a decrease
of the crack deflection angle (ϕ ≈ 30◦) due to the higher weighting for the gradient in y-direction.

3.2 Plates with hole

For the second example, the proposed anisotropic phase field model is applied to experiments
performed within a work of Judt and Ricoeur [9]. In this work rolled aluminium sheets which
reveal a directional dependency of the fracture resistance are investigated. Therefore, tensile tests
of plate specimens with an initial crack were performed. Results of the crack growth experiments
are compared with simulations. A main focus is on how the level of the anisotropy effects the
crack path. The anisotropy is thereby quantified by the factor χ = KTD

Ic /KRD
Ic containing the

fracture toughness in transverse(TD) and rolling(RD) direction, respectively. Transient numerical
simulations including crack tip shifting and automatic remeshing were performed to obtain the
crack path in [9]. Within these simulations the criterion of maximum energy release rate [4] was
applied to estimate the direction of the crack extension. According to this approach, the crack
grows in the direction providing the maximum energy release rate G(ϕ). To include anisotropy
of the fracture resistance the critical energy release rate Gc(ϕ) was interpolated between GTDc
and GRDc . The crack was incrementally enlarged in the direction, which maximizes the quotient
G(ϕ)/Gc(ϕ). Figure 2(a) shows a detail of an investigated specimen with calculated crack paths
indicated for three different factors χ. This specific example is used to verify the proposed phase
field model. Figures 2(b-d) show the crack field obtained by phase field simulations for three
different values of the parameter α.

χ = 1.00

χ = 1.05

χ = 1.10

ααα = 0.0

ααα = −0.025 ααα = −0.047

(a) (b)

(c) (d)

1

0

1

0

1

0

s

ss

Figure 2. Comparison of crack paths obained by the phase field model (ν = 0.33, ε = 0.006, M = 10) with
results of [9]: (a) results of [9], (b) α = 0.0, (c) α = −0.025, (d) α = −0.047.

Within the modified phase field model an anisotropy regarding the fracture resistance is solely
quantified by the ratio of the coefficients of Φ. Accordingly, this ratio can be connected to the
ratio of the fracture resistance in different spatial directions χ by α = 1−χ

1+χ . The α-value for the
three samples of Fig. 2(b-d) were calculated this way using the particular χ-values leading to



the different crack courses illustrated in Fig. 2(a). If no anisotropy is considered (α = 0), the
crack deflects from the horizontal axis and extends upwards as it passes the holes left contour
edge. Beyond the center of the hole the crack grows in horizontal direction again. The resulting
vertical offset of the crack path is larger if α is set to −0.025. For α = −0.047 the crack does
not pass the hole, but rather grows directly in its direction.

Conclusions

The effect of an anisotropic fracture resistance on the crack path is realized by a modification of
the gradient term of an existing phase field model for fracture. The behaviour of the enhanced
model is illustrated by two numerical examples. The weighting in the gradient term of the
crack energy functional leads to a different crack path as compared to the isotropic case. The
simulations show that a crack extension in the direction of a lower fracture resistance is preferred
within the crack field evolution. Further proof of the model is made by the comparison to an
alternative crack path prediction method. Even if the three simulated crack fields of the second
example do not perfectly coincide with the results of [9], it can however be confirmed that the
trend of the crack path obtained by the phase field simulation is consistent with regard to the
effect of an anisotropic fracture resistance.
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