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Micro Abstract
This contribution introduces different modelling techniques and optimal control approaches
for humanoid structures that are actuated by dielectric elastomers. Dielectric elastomers, also
known as artificial muscles, belong to the group of smart materials. When excited with an electri-
cal voltage, the elastic material contracts noiselessly, allowing for smooth motion of the actuated system.

1Chair of Applied Dynamics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany

*Corresponding author: tristan.schloegl@fau.de

Introduction

Dielectric elastomer actuators (DEAs) are composed of an elastic dielectric material that is
sandwiched between two compliant electrodes, as illustrated in Figure 1. When the electrodes are
charged by applying an electric potential to them, charges with opposite signs attract each other,
leading to a contractive force also known as electrostatic pressure [4]. When several DEA cells
are stacked on top of each other, resulting in a pile-up configuration, the electrostatic pressure
provides macroscopically useful displacements [1]. Stacked DEAs are also referred to as artificial
muscles, because they bear analogy to the behaviour of human muscles in terms of contracting in
length direction when stimulated. The idea of using artificial muscles as sophisticated actuators
offers a broad variety of potential applications. The elastic structure acts as an energy storage
and allows for dynamic motion of robots and safe human interaction. However, the use of elastic
actuators is also accompanied by new control challenges. Advanced control strategies need to
avoid undesirable oscillations, bring the system as quickly as possible into its steady state and
follow prescribed trajectories as close as possible.

In this work, two different DEA models are presented. The first model is based on a general
three-dimensional field theory of electromagnetic forces in deformable continua with arbitrary
geometry. This model is very powerful but also computationally very costly and hence suitable
only for forward dynamic simulations. The second approach exploits symmetries, regularities
and predicted behaviour of the muscles, leading to a so called lumped parameter model, where
spatially discrete configuration variables condense the complex physical relationships. As this
model reduces the computational cost drastically, it can be utilised for optimisation tasks which
is illustrated in a numerical example.
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Figure 1. Functional principle of a dielectric elastomer actuator.



1 Muscle Model

The electromechanically coupled dynamical system within the actuator B0 and on the actuator
surface ∂B0 with surface normal N can be written as

∇X · P tot + bmech
0 = ρ0ẍ ∇X ·D = 0 in B0 (1a)

P tot ·N = T D ·N = −Q in ∂B0 (1b)

where bmech
0 is a mechanical volume force, ρ0 is the material density, ẍ the acceleration of a

material point, T a mechanical surface traction, D the electric displacement and Q an electric
charge density. The total first Piola-Kirchhoff stress P tot is composed such that

P tot = P ela + P vis + P ele, (2)

where P ela is the pure mechanical stress, P vis covers viscous contributions and P ele is the
Maxwell stress tensor that originates from the applied electric field and associated polarisation
effects within the material [6].

Constitutive relationships are specified via an electromechanically coupled hyperelastic material
approach. Assuming the deformation gradient F and the electric field E are independent
variables, the potential energy density Ω might take the form

Ω(F ,E) =
µ
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(3)
with the model parameters µ, λ, c1, c2, the right Cauchy-Green tensor C, J = det(F ) and vacuum
permittivity ε0. From this energy density, the stress and electric displacement field can be
derived via

∂Ω

∂F
= P ela + P ele ∂Ω

∂E
= −D, (4)

respectively [7], while the viscous contribution P vis might be taken from [6].

1.1 Finite element approach

For numerical treatment, the complex electromechanical coupling equations (1) need to be
discretised both in space as well as in time. In this work, at first the spatial discretisation is
carried out using hexahedral finite elements and linear shape functions to obtain a system of
ordinary differential equations with a spatially discrete configuration. Then, a variational time
integration scheme is derived. The variational integrator shows a very good long time energy
behaviour [2]. There is neither numerical damping nor an artificial energy gain present and the
total energy error is bounded.

Even though the finite element based simulation framework provides a powerful tool to solve
electromechanically coupled and dynamic problems of arbitrary geometry, the computational
cost is quite demanding. Therefore, so called lumped parameter models are often used for
complex tasks like solving optimal control problems.

1.2 Lumped parameter approach

In this work, it is assumed that the deformation of a reference actuator happens symmetrically
and volume preserving (x̂ŷẑ = X̂Ŷ Ẑ) as illustrated in Figure 2, such that the deformation field

x =
(
x1 x2 x3

)T
for a material point X =

(
X1 X2 X3

)T
can be written as

x1 = X1
x̂

X̂
= X1

√
Λ−1 x2 = X2

ŷ

Ŷ
= X2

√
Λ−1 x3 = X3

ẑ

Ẑ
= X3Λ, (5)



Figure 2. Deformation of DEA cell due to an applied
voltage.

Figure 3. Kinematic chain with director
coordinates that span a local Euclidean
coordinate system.
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Figure 4. Assembled elephant trunk with 6 rigid bodies and 12 artificial muscles in its initial configuration
(light grey) and deflected state (coloured). The colouring refers to the applied electric potential.

with the scalar strain measure Λ = ẑ/Ẑ. As a consequence, the deformation gradient F = ∂x/∂X
is spatially constant and the equations of motion (1) can be solved analytically without any
further spatial discretisation.

2 Multibody System

To explore the complex behaviour of humanoid robots that are actuated by artificial muscles,
the actuator model is coupled with a multibody system. The multibody system consists of
a chain of rigid bodies that are connected by joints, as illustrated in Figure 3. The coupling
between the finite element muscle model and the rigid bodies is formulated at configuration
level, where Lagrange multipliers account for constraint forces, leading to differential algebraic
equations of index-3. A well-chosen set of redundant configuration variables for the multibody
system [2] avoids rotational degrees of freedom and leads to linear coupling constraints. As a
result, the coupling between the artificial muscles and the multibody system can be formulated
in a very modular way that allows for easy future extension [5]. The variational integrator allows
to solve the index-3 system directly and with numerical accuracy, avoiding index reduction
approximations.

3 Optimal Control

When applying constant voltages to the muscles, the actuated system starts oscillating (due to
inertia terms) until viscoelastic contributions dissipate the kinetic energy and the system ap-
proaches its steady-state. To avoid these oscillations, the direct transcription method DMOCC [3]
is applied, leading to an optimisation problem of the form

min
x
J (x) subject to c(x) = 0, (6)

where x contains the discrete configuration variables and controls for all time steps and the
equality constraints c are composed of (a) variational time integrator equations to obtain
physically meaningful solutions, (b) prescribed initial and final states and (c) path constraints
such as control bounds. The objective J allows to specify a function that is being minimised by
the optimised control trajectory.

The example model is a kinematic chain that consists of series-connected revolute joints as
illustrated in Figure 4. Each joint is rotated relative to its predecessor by 90 degrees around the



Figure 5. Optimised voltage trajectories in the 12
artificial muscles.

Figure 6. Elephant trunk tip motion path.

y-axis and actuated via two artificial muscles in agonist-antagonist configuration. This setting
allows for motion in all space dimensions and is further referred to as elephant trunk. In the
present example, the elephant trunk shall move from its initial configuration to the deflected
state as depicted in Figure 4 and the objective function to be minimised is the control effort
regarding the applied voltages. In Figure 5, the optimised voltage trajectories in all actuators
are illustrated. It can be observed that there is a complex interaction between agonists (odd
muscles, solid) and some antagonists (even muscles, dashed). In Figure 6, the motion of the
elephant trunk tip in the (x-z)-plane can be observed. While the constant voltages lead to
overshooting and oscillations around the steady state, the optimised voltage trajectories actuate
the system directly towards its final configuration.

Conclusions

The utilised variational time integration scheme turned out to be very suitable for solving
electromechanically coupled problems. Apart from the preservation characteristics and the good
energy behaviour, the integrator allows to solve algebraic constraints exactly at the discrete time
nodes. This allows for a neat coupling between the artificial muscles and the actuated structure.
Optimal control theory provides a suitable tool for avoiding oscillations that are inherent with
the elastic nature of the actuators and for obtaining optimised voltage control trajectories.
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