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Micro Abstract
A phase field model for elastic-plastic fracture is presented, which is based on an energy func-
tional composed of an elastic energy contribution, a plastic dissipation potential and a fracture
energy. The coupling of the mechanical fields with the fracture field is modeled by a degradation
function. Numerical simulations are presented, where the choice of the degradation function is
investigated and a staggered solution scheme is compared to an also possible monolithic iteration scheme.
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1 Introduction

Today, there is a great number of phase field models for brittle fracture originated in the physics
as well as in the mechanics community, [2]. A key ingredient for the development of these
models from the mechanics community is the variational formulation of brittle fracture proposed
by Francfort and Marigo, [4]. For a model considering ductile fracture however, an respective
variational formulation is missing, [1]. Nevertheless, in recent years brittle phase field models
were extended in order to describe fracture scenarios where crack propagation is affected by
plastic deformation. One drawback of most of these models is a rather complex coupling between
the crack field and the material laws leading to the necessity to apply staggered finite element
solution schemes in order to avoid complicated coupling terms of the monolithic tangent. In
this approach a phase field model for quasi-static elastic-plastic fracture is proposed, where the
specific coupling of the phase field parameter with the elastic-plastic material law enables a
monolithic solution scheme to be employed.

2 Model

The model is based upon the free energy density

Ψ [ε(u) , s,∇s; εp, α] = g(s) (Wel(ε− εp) + Πpl(α)) + ψfr(s,∇s). (1)

The elastic energy density Wel depends on the infinitesimal total strain ε and the first internal
variable, the plastic strain εp, since their difference yields the elastic strain. The fracture energy
density, which is a function of the crack field s, where s = 1 indicates intact material, while
s = 0 represents fractured material, is denoted ψfr. The plastic dissipation potential

Πpl = α

(
σY +

1

2
αH

)
(2)

is a quadratic function of the internal variable, representing the accumulated plastic strain α,
in order to account for linear isotropic hardening. The parameters H and σY represent the



plastic hardening modulus and the initial yield stress, respectively. A degradation function
gβ(s) = β(s3 − s2) + 3s2 − 2s3 + η, which is equal to 1 for s = 1 and approximately 0 for s = 0
is used to ensure that elastic and plastic contributions of cracked material no longer contribute
to the total energy. The parameter β ranges from 0 to 2, where β = 2 corresponds to the
standard quadratic form, and is adopted from [3]. For stability purposes the parameter η � 1 is
introduced.

The governing equation for the mechanical problem, the balance of linear momentum, and the
time dependent Ginzburg-Landau evolution equation for the phase field are

divσ = 0, with σ =
∂Ψ

∂ε
and ṡ = −M δΨ

δs
, (3)

where σ is the Cauchy stress tensor and M is a positive kinetic coefficient.

The hardening force q and the von Mises type yield condition are

q = −∂Ψ

∂α
and f(s, α) =‖ s ‖ +
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)
= 0, (4)

where s denotes the deviatoric part of the Cauchy stress tensor. The quantities marked with
(·)∗ indicate undegraded quantities. The evolution laws for the internal variables are

ėp = γ
∂f

∂s
= γ

s

‖s‖
and α̇ = γ

∂f

∂q
= γ

√
2

3
, (5)

where γ is the absolute value of the slip rate.

3 Implementation

From the weak forms of (3), where ∇s · n = 0, with n as the outer normal, is assumed on the
crack free part of the boundary of the body, a set of discretized nonlinear equations

R(u, s) = 0, with u =
[
[u1]

T , .., [uN ]T
]T

and s = [s1, .., sN ]T , (6)

is yield. The displacement and crack fields in (6) are approximated by their discretized counter-
parts, where uI and sI are the nodal values of the FE discretization. The implicit Euler method
is used to approximate the time derivative of the crack field. The residual expression (6) is
implemented into the finite element code FEAP as a user element. Healing of cracked material
is prevented by fixing nodes to zero, where the crack field has dropped below a prescribed value.
The plastic update is determined on element level. The factorization in (4) enables the utilization
of an unaltered radial return algorithm [6]. A monolithic scheme as well as a staggered solution
scheme can be applied to solve the nonlinear system of equations. Both schemes are outlined
in 3.1.

3.1 Solution schemes

In the monolithic solution scheme the residual (6) is solved for all nodal degrees of freedom,
three spacial displacements and the crack field, simultaneously. Solutions for the nodal degrees
of freedom are iteratively approximted in a single Newton-Raphson loop per timestep. The
approximation is considered to be converged if the residual norm meets a prescribed tolerance.
In the staggered solution scheme on the other hand, the residual is solved for the three spacial
displacements with fixed crack field in a first Newton-Raphson loop and subsequently the crack
field is solved for fixed spacial displacements in another Newton-Raphson loop. The solution is
considered to be converged if a certain criterion adopted from [2] is met, otherwise the procedure
is repeated.



4 Numerical Results

A single notched tension probe discretized in 80 × 80 × 1 brick elements and mounted, such
that plane strain conditions apply, serves as a numerical example where the influence of the
mobility parameter M in different hardening scenarios and the performance of the two solution
schemes is compared. Therefore, a linear increasing displacement load on the top and bottom
edge of the probe is applied. The initial yield stress is chosen σ̄Y = 1.0. Quantities marked as
(̄·), indicate dimensionless quantities, whereupon the ansatz from [5] used for the transformation.
The parameter β = 0.1 is chosen for the cubic degradation function. Degradation functions with
lower values of β render to be more vulnerable for convergence problems. However, instead a
discrepancy between effective and nominal parameters as observed for the standard quadratic
function (β = 2) in [5] is avoided for sufficiently small values of β.

If a high hardening modulus of H̄ = 0.1 is chosen, although yield stress has been overcome
and plastic strain is present, the driven crack path is straight (see Fig. 1 (a)) and the same as
in the purely elastic case. Load displacement curves are independent on the chosen mobility
almost identical (see Fig. 1 (b)), whereupon only for M̄ = 1 the curve is shifted to slightly
higher displacements. If a lower hardening modulus of H̄ = 0.02 is chosen, the crack kinks in
direction of high plastic deformation (see Fig. 2 (a)). As in the case of the higher hardening
modulus, the load displacement behavior is almost independent from the chosen mobility (see
Fig. 2 (b)). However, for low mobility M̄ = 1 as well as for high mobilities M̄ = 50 and
M̄ = 100 no converged solution was found at the loadings marked with ’×’.

For M̄ = 10 and H̄ = 0.1 simulations using the staggered scheme are compared to simulations
using the monolithic solution scheme in terms of computational performance (see Fig. 3). A
constant timestep size was chosen in the simulations using the staggered scheme, while an
adaptive timestep algorithm was used in the simulations using the monolithic scheme. The
smallest and largest timestep size used with the staggered scheme correspond to the lowest
and highest timestep size determined by adaptive time stepping algorithm with the monolithic
scheme. Only for the smallest timestep size used with the staggered scheme the simulation is in
the same order of magnitude.
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Figure 1. Contour plot of the crack field for M̄ = 5 and H̄ = 0.1 (a) and load displacement curves of the
simulations with H̄ = 0.1 and varying parameter mobility (b).

Conclusions

The monolithic solution proves to be more efficient, but reveals stability issues, while the
staggered scheme bestows to be very stable, but less efficient. For cubic degradation functions
stability issues with monolithic scheme for high and low mobilities in weak hardening scenarios
arise.
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0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

re
a
ct
io
n
fo
rc
e
F̄
1
[−

]

M = 1
M = 5
M = 10
M = 50
M = 100

(a) (b)

Figure 2. Contour plot of the crack field for M̄ = 5 and H̄ = 0.02 (a) and load displacement curves of the
simulations with H̄ = 0.02 and varying parameter mobility (b).
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Figure 3. Performance curves of monolithic solution scheme with adaptive timestep size and staggered
solution scheme with varying constant timestep size and convergence tolerance.
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