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Micro Abstract
Crashworthiness optimization problems are characterized by strong nonlinearities and discon-
tinuities. Hence, gradient-based methods cannot be used and alternative approaches have
to be considered. Here, a novel, kriging-based method for level set topology optimization is
proposed and validated on a crash test case. Compared to CMA-ES, this method demonstrates
to be efficient in terms of convergence speed and promising in the context of crash topology optimization.
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Introduction

Structural Topology Optimization (TO) [5] was first introduced by Bendsøe and Kikuchi [4].
It is a well-developed discipline which aims to determine constructive solutions for component
structures through changing material distribution in a given design space so as to obtain an
optimal performance of the concept design. Since crashworthiness optimization problems are
characterized by high nonlinearities, noisiness and discontinuities of the objective functions to
be optimized, heuristics are frequently introduced in TO strategies, which are often not accepted
by the engineering community. As such, alternative approaches to the most known TO methods
(Equivalent Static Loads methods [12,22,28], Ground Structure Approaches [17,29], Bubble and
Graph/Heuristic-based approaches [13,14,26], Hybrid Cellular Automata techniques [25,30]) have
to be found. Recently, a novel approach for optimization of crash problems, the Evolutionary
Level Set Method (EA-LSM) for crash Topology Optimization, was proposed [7–9]. This
approach uses Evolutionary Algorithms (EAs) [3] to handle the update process when no reliable
gradient information can be used. However, Evolution Strategies require thousands of calls to
the high-fidelity analysis codes to locate a near optimal solution. Therefore, they are substituted
in this work by an optimization strategy introducing Surrogate Modeling techniques [16]. They
replace the direct optimization of the computationally expensive model by an iterative process
that consists of the creation, optimization and updating of a surrogate model that, being orders of
magnitude cheaper to run, can be used to obtain many more evaluations during the optimization
process. The key component of any surrogate-based optimization algorithm is the approximation
model, which can be chosen among a multitude of alternatives: Polynomial Regression [11,16],
Radial Basis Function [6,16], Kriging [2, 16,23], Support Vector Regression [18,34], Artificial
Neural Networks [24, 35] and others. The results of this research were obtained by using a
Kriging-guided Level Set Topology Optimization Method (KG-LSM) [32], which couples the
Level Set Method with a Kriging-surrogate approximation model. The choice of the Kriging
surrogate is motivated by several reasons. Firstly, the high accuracy of the model was confirmed
by carrying out some testing on the different surrogates. In addition, relevant flexibility is given



by the parameters’ estimation at each iteration of the approximating algorithm. Finally, the
model is able to furnish an estimate of the potential error in the approximation, useful in a
crucial phase of the optimization procedure, described later. The state-of-the-art Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) [20] is taken as a reference to compare the
convergence properties and the optimized designs resulting from the proposed approach.

The paper has the following structure. Section 1 describes the adopted optimization strategy,
characterized by an implicit parametrization with geometric level set functions and a Kriging-
guided updating process. Moreover, the considered optimization problem and the techniques
to handle constraints are presented. In Section 2, the experimental test case and the obtained
results are discussed. Final conclusions are drawn at the end.

1 Optimization strategy

1.1 Level Set Method Parametrization

The great majority of structural TO methods belong to the group of density-based approaches
[1]. An alternative to these strategies is given by the Level Set Method. In the level set
framework [27], the material distribution is given by a boundary defined by a level set (iso-
contour) of an embedding scalar function: the Level Set Function (LSF). During the optimization
problem, the structural boundaries move due to the changes in the embedding function. As a
result, interior and exterior boundaries may merge with each other, new holes may be created
or preexisting ones deleted. All the TO approaches share three base key concepts: the LSF
parametrization, the mechanical model and the optimization strategy.

The LSF parametrization used in this work is inspired by the definitions by Guo et al. [19]
and Bujny et al. [7]. The global LSF is defined in order to assume positive values inside the
domain areas occupied by material Ω, negative values outside (D\Ω) and to be equal to 0 on
the boundary ∂Ω. It is composed by local basis functions, representing many elementary beam
components free to move and overlap on the design domain:

φi(x) = −
[(

cos θi(x−x0i)+sin θi(y−y0i)
li/2

)m
+
(
− sin θi(x−x0i)+cos θi(y−y0i)

ti/2

)m
− 1
]
, (1)

where x = (x, y)T is a point of the bidimensional domain D = R2 and (x0, y0) denotes the
position of the centre of the component with length l, thickness t, and rotation angle θ, as shown
in Fig. 1(a). m is a relatively large even integer number, usually taken equal to 6 [7,19]. The
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Figure 1. Structural components details [7]: (a) component parametrization, (b) corresponding local
level set function, where negative values are set to zero, (c) combination of local level set functions.

LSF is then mapped to the finite element mesh through a density-based geometry mapping [7,32]
and an optimization strategy by means of Kriging-guided mathematical programming is carried
out, whose basics are presented in the following section.

1.2 Kriging Optimization Algorithm

The update procedure proposed in this work is the Efficient Global Optimization (EGO)
algorithm [2,21]. The algorithm starts with a Design of Experiments (DoE) [10], which allows for



sampling the high-fidelity function uniformly within the considered domain, and then constructs
a model to approximate the expensive function. Based on the latter, new points (infill points)
are chosen and added one at each iteration to the initial DoE samples, in order to improve
the quality of the approximation. In this research, a Kriging surrogate model starting from an
Optimal Latin Hypercube Sampling (OHLS) [15] was used and updated iteratively with the use
of Differential Evolution (DE) [33] by maximizing proposed variants of the standard Expected
Improvement (EI) infill criterion [16].

The DoE training data are seen as results of a stochastic process and denoted by using a set
of random vectors Y(x) = [Y (x(1)), ..., Y (x(n))]T , with mean 1µ, where 1 is an n x 1 column
vector of ones. Moreover, the correlation between each couple of random variables is described
using a squared-exponential basis function expression:

ψ(x(i),x(l)) ≡ cor[Y (x(i)), Y (x(l))] = e−
∑k
j=1 θj |x

(i)
j −x

(l)
j |

2

, (2)

where the θ vector allows the width of the basis function to differ from variable to variable and
can be estimated by using the likelihood of the predicted data y, defined as:

L(Y (1), ..., Y (n)|µ, σ) =
1

(2πσ2)n/2
e−

∑
(Y (i)−µ)2

2σ2 . (3)

After appropriate substitutions and simplifications, the natural logarithm of Eq. (3) is considered.
By deriving and setting the derivative to zero, the maximum likelihood estimates (MLEs) for
the mean µ and variance σ2 are obtained and used to predict the model response ŷ at a new
location x and the committed error in the prediction ŝ2 [16, 32]:

ŷ(x) = µ̂+ψTΨ−1(y− 1µ̂), ŝ2(x) = σ̂2
[
1−ψTΨ−1ψ +

1− 1TΨ−1ψ

1Ψ−11

]
, (4)

where Ψ is the correlation matrix between the random variables.
The estimation of the uncertainty on the interpolated function value is essential to define

the EI updating criterion:

E[I(x)] =

{
(ymin − ŷ(x))Φ

(
ymin−ŷ(x)

ŝ(x)

)
+ ŝ(x)φ

(
ymin−ŷ(x)

ŝ(x)

)
if ŝ(x) > 0

0 if ŝ(x) = 0
(5)

where Φ and φ are the Gaussian cumulative distribution function and probability density function
respectively. One major advantage of Eq. (5) is that it allows to locate new points in both
promising areas, close to the best values observed so far, and the less explored ones, characterized
by a low sampling density.

1.3 Optimization Problem and Constraint Handling

In this work, an optimization problem of the following form is dealt with:

min
x

fobj(x),

s.t. r(t) = 0,

gi(x) ≤ 0, i = 1, ...,m, x ∈ Rn,

(6)

where fobj is the objective function to be minimized, r(t) = 0 is the condition which expresses
the dynamic equilibrium at time t and gi, i = 1, ...,m, are the inequality constraints. The vector
x of the design variables collects all the parameters defining the LSM basis functions. In this
work, the objective function fobj is the intrusion of an impacting pole in a transverse bending
crash scenario, where the structure is subjected to a connectivity and a volume constraint. The
first aims to ensure that the designs obtained during the optimization process make physical



sense, while the second is necessary to meet the industrial requirements of limited mass for each
designed component. Different techniques to handle the constraints were developed.

The Expected Improvement for Connected Designs (EICD) is a proposed variant of the
standard EI that ensures the connectivity of the promising candidates in the infill procedure.
When disconnected designs are met during the maximization of EI by DE, a penalty which is
proportional to the level of infeasibility is computed:

P = γ(PS1 + PS2 + PC), (7)

where PS1 and PS2 are the minimum distances between the structure and the left-hand side and
right-hand side supports respectively. In case the design is split in disconnected parts, PC is the
minimum distance between those sub-structures and γ is a suitable penalty factor. A graphical
representation of the penalty distances is given in Fig. 2.

Figure 2. Example of violation of the connectivity constraint. The red solid lines represent the
extra-distances between the structure and the supports, which are equivalent due to the symmetry
condition. The red dashed line indicates the minimum distance between different connected components.

The penalty P is used to modify Eq. (5) as follows:

E[I(x)] =

{
E[I(x)] if x is connected,

−P (x) if x is disconnected.
(8)

As a result, the disconnected designs are automatically discarded in the maximization of Eq. (8).
The Constrained Expected Improvement (CEI) [16] is used to drive the infill search towards

designs which do not exceed the admitted volume limit (set to the 50% of the entire area of the
design domain). It maximizes the product between EI and the Probability of Feasibility (PF),
i.e. the probability that the volume constraint is satisfied:

xinfill = argmax
x

E[I(x)]P [F (x)]. (9)

An alternative to the CEI is the exterior penalty method [31], whose ability to guarantee the
volume requirements is tested in this work for both the proposed Kriging-guided optimization
algorithm and the CMA-ES.

2 Test case and results

The considered dynamic test is performed on a standard transverse bending case, where a
cylindrical pole impacts in the middle of a structure defined on a rectangular design domain,
fixed at both ends (Fig. 3(a)). The optimization goal is to minimize the intrusion of the pole
into the structure. The level set function is mapped on the reference LS-Dyna mesh, shown in
Fig 3(b). It is composed of 1600 eight-node solid elements, which are assigned a piecewise linear
plasticity material. The test settings are shown in Table 1.

This work presents a 6-beams 15-variables problem to evaluate the KG-LSM performance in
a constrained dynamic environment. Despite the low number of parameters, reasonably good
structures can be obtained thanks to the used parametrization. Indeed, a reference configuration
of 6 beams arranged within the design domain according to Fig. 4 is considered. A symmetry
of the design with respect to the domain vertical symmetry axis is assumed and all the beams’
parameters are allowed to change during the optimization process. Starting from a 200-samples
DoE, the following strategies have been compared (Fig. 5):



(a) (b)

Figure 3. Transverse Bending test case: (a) problem definition and (b) LS-Dyna FEM mesh.

Property Symbol Value Unit
Beam material density ρ 2.7 · 103 kg/m3

Young’s modulus E 7.0 · 104 MPa
Poisson’s ratio ν 0.33 -

Yield stress Re 241.0 MPa
Tangent modulus Etan 70.0 MPa

Pole velocity v 20 m/s
Pole mass m 11.815 kg

Pole diameter D 139.154 mm

Table 1. Configuration of the considered transverse bending test case.

Figure 4. Reference 6-beams configuration for the dynamic transverse bending test case.

• CMA-ES: Covariance Matrix Adaptation Evolution Strategy initialized with the 6-beams
reference structure in Fig. 4 and volume constrain handled by the exterior penalty method;

• DoE-CMA-ES: Covariance Matrix Adaptation Evolution Strategy initialized with the best
design resulting from the DoE phase and volume constrain handled by the exterior penalty
method;

• KG-LSM-DoEsel-EICD-CEI: Kriging-guided optimization method with initial DoE selec-
tion by removing the infeasible points and the EICD coupled with CEI infill criterion to
handle both the connectivity and the volume constraint during the infill procedure;

• KG-LSM-DoEvar-EICD-volpenalty: Kriging-guided optimization method with initial DoE
selection by removing the infeasible points and the EICD coupled with an exterior penalty
method to handle both the connectivity and the volume constraint during the infill
procedure.

For both CMA-ES and DoE-CMA-ES, a population size of 6 parent and 12 offspring individuals
is considered. In the third tested configuration, the coupling between EICD and CEI is obtained
by applying the connectivity check described in Section 1.3 in the maximization of the EI·PF.

In Figure 5(a), the superiority of the Kriging-guided methods is evident throughout the
optimization process. Not only the convergence is faster at the beginning, but also CMA-
ES strategies are not able to reach the average performance of KG-LSM methods within the
considered range of evaluations. It is worth noting that both the KG-LSM methods outperform
DoE-CMA-ES, which is initialized by choosing the first population of parent individuals as the
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Figure 5. Comparison of the optimizations’ average convergence over 30 runs of the proposed KG-LSM
methods and CMA-ES for the 15-variables transverse bending test case (a) box plot after 300 evaluations
(b). The initial flat trends in (a) are obtained by replicating the best DoE fitness value for the number of
performed evaluations in the DoE phase.

best DoE sample, available from the surrogate-based procedure. Therefore, the good convergence
properties of the proposed optimization approach do not exclusively depend on the initial
DoE procedure. The intrinsic nature of the EICD infill criterion, balancing exploitation and
exploration, leads to a more efficient search than the DoE-CMA-ES one, which shows a more
exploitive behavior and converges frequently to local optima.

The boxplot in Figure 5(b) confirms the lower optimum values of the Kriging-guided
strategies. After 300 evaluations, the statistics among 30 runs illustrate a quite uniform behavior
of the KG-LSM methods, KG-LSM-DoEsel-EICD-volpenalty in particular. In fact, they show a
smaller variance value with respect to the two considered Evolution Strategies.

When it comes to the obtained topologies, even more interesting results can be observed. Fig.
6 shows the best designs obtained by the DoE-CMA-ES and the Kriging-guided optimization
strategies, compared to the best and the second best optimum available from a research by Bujny
et al. [9], where the same test case is studied. It has to be noted that the designs resulting from

(a) (b) (c)

(d) (e)

Figure 6. Best designs for the intrusion minimization problem obtained with (a) DoE-CMA-ES, (b)
KG-LSM-DoEsel-EICD-CEI and (c) KG-LSM-DoEsel-EICD-volpenalty compared to the best (d) and
second best (e) optimal layouts available in the literature [9] for the same test case.

the KG-LSM strategies (Fig. 6(b)-6(c)) are not only qualitatively superior to the best layout
from DoE-CMA-ES, shown in Fig. 6(a), but also fully consistent with the ones available in the
literature [9] (Fig. 6(d)-6(e)). In particular, the KG-LSM-DoEsel-EICD-CEI is able to find the
local optimum shown in Fig. 6(e) with a much lower computational effort than needed to reach
the optimum by using Evolution Strategies. Therefore, very good results were obtained from
both the convergence and the final designs point of view. This represents a significant evidence of
the proposed method’s capabilities in providing useful indications for the practical construction
of structural components and a sufficient reason to go for further investigations.



Conclusions

In this work, a novel KG-LSM was presented and used for identification of optimal topologies
of beam structures in a transverse bending test problem. Different techniques to handle two types
of constraints - connectivity and volume - were applied. The convergence behavior and the final
material distributions were presented to analyze the performance of the proposed Kriging-guided
Topology Optimization strategy in a crashworthiness context, where the applicability of the
standard crashworthiness optimization methods is limited due to the strong nonlinearities and
discontinuities characterizing the problem.

Every KG-LSM strategy was compared with the state-of-the-art CMA-ES in a pole intrusion
minimization problem. A DoE-CMA-ES strategy was also used for comparison purposes, due to
the high influence the DoE procedure has on the optimization process itself. Fast convergence
capabilities and a good performance of the obtained designs were found, confirming the method
to be promising in the context of crash topology optimization. In fact, since many expensive
optimization problems, such as crashworthiness ones, are limited by the available number of
iterations, a fast convergence at the initial stages of the optimization process is often desired.
The high-quality beam topologies are an ulterior evidence of the KG-LSM ability to identify
optimal concept designs in early stages of the product development process. Moreover, since no
sensitivity information is needed to carry out the optimization process, the proposed method
offers great flexibility in many applications. The promising results motivate future analyzes on
higher-dimensional crash problems and alternative objective functions.
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