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Micro Abstract
In this contribution a homogenisation method based on the Irving-Kirkwood theory is introduced.
The homogenisation formulas for mass and impulse are consistent with the theory and from
there homogenisation formulas for the stress tensor and body force vector are derived. A numer-
ical implementation of the theory is shown and examples with various boundary conditions are
presented and compared to results obtained with a Hill-Mandel-approach as well as a full scale approach.
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Introduction

The existing and in FE2 widely used Hill-Mandel homogenisation limits possible boundary
conditions very strictly. The desire to get rid of those restrictions led to the development
of a more general homogenisation method based on the Irving-Kirkwood theory [3]. In this
contribution we want to discuss the implementation for small strains and compare results between
the new and the Hill-Mandel approach as well as benchmark them with a full scale model.

1 Irving Kirkwood theory

The basis of the Irving Kirkwood theory is a description of the heterogenous body in two scales.
One scale shall be a macroscopic one, in which the body is considered to be homogeneous. The
homogeneous properties defining the material in the macroscopic scale are extracted through
homogenisation from a second, microscopic scale in which the heterogeneous properties of the
material are represented.
In detail, there shall be given a body B inhabiting the area R with boundary ∂R. A point in
B shall be described with coordinates y defining the macro scale. For very point y there is an
assigned surrounding area Pm of the micro scale, described with coordinates x.
For all subdivisions of R and all Pm the mass and linear momentum balance laws hold:

ρ̇α + ρα∇y · (vα) = 0, (1)

ραv̇α = ∇x · σα + ραbα. (2)

Here, α is a placeholder for an index m for microscopic or M for macroscopic, indicating the
scale in which the quantity is defined. Further, ∇x · (·) denotes the divergence of (·) with respect
to x.
In the next step, the two equations shall be connected as they hold within the same body.
For this a homogenisation law is postulated, connecting the density and linear momentum of
microscopic and macroscopic scale:

ρM(y, t) =

∫
R
ρm(x, t)g(y,x) dV m, (3)

ρM(y, t)vM(y, t) =

∫
R
ρm(x, t)vm(x, t)g(y,x) dV m. (4)



In (3) and (4) g(y,x) is a weighting function, which needs to fulfill a few basic properties in
order to not compromise the theory. For further information on those properties and their
implications see [2].
The consistency of these homogenisation laws can be shown by determining the time derivative
of (3) and then using only the Reynolds transport theorem, the properties of g(y,x) and finally
inserting (3) and (4) which leads to the local form of the linear momentum balance (2).
By equal means it can be shown that the homogenisation law for the linear momentum (4) is
consistent with the theory as well. From this contemplation we also get a homogenisation law
for the stress tensor σ and the body force vector b:

ρMbM :=

∫
R
ρmbmg dV m, (5)

σM :=

∫
R

[
σm − ρm(vm − vM)⊗ (vm − vM)

]
g dV m. (6)

In these equations the dependencies of the quantities are left out for better readability.
For a more detailed contemplation on the consistency of (3) and (4), as well as the derivation of
(5) and (6) see [2]. Here, a quasi-static case is considered, so the difference in velocity between
microscale and macroscale is zero (vm − vM = 0). This leads to a very simple homogenisation
law for the stress tensor σ:

σM :=

∫
R
σmg dV m. (7)

2 Finite element formulation

From now on, we want to limit the theory to small strains and set the weighting function to
g(y,x) = 1

V m , where V m is volume of the representative volume element (RVE). In order to
get rid of the restrictions on the boundary conditions in the Hill-Mandel theory, an additional
constraint connecting microscopic and macroscopic strains is introduced:

εM =

∫
R
εmg dV m =

1

V m

∫
R
εm dV m ⇔

∫
R

(εM − εm) dV m = 0. (8)

This additional constraint shall be introduced into the weak form of equilibrium via 6 Lagrange
multipliers for the 6 equations resulting from (8) for each RVE. We vary with respect to the
displacements u, the Lagrange multipliers µ and the macroscopic strains εM. The latter allows
a much easier formulation of the homogenisation and implementation into the existing FE code
than the approach presented in [3]. With vanishing boundary and body volume forces, this leads
to: ∫

R
δεmTσm − δuTf dV m +

∫
R
δµT(εM − εm) dV m +

∫
R
µT(δεM − δεm) dV m = 0. (9)

Linearisation and a standard iso-parametric FE-formulation leads to:

L[. . . ] =δV mT(K∆V m +A∆µ+ F ) + δµT(AT∆V m + T∆εM) + δεMT(TT∆µ) = 0. (10)

Where εm = BV m, K is the stiffness matrix and V m the displacement vector for the RVE. The
matrices A and T are defined below.

K :=

∫
ω
BTDB dV m, A := −

∫
ω
BT dV m, T :=

∫
1 dV m. (11)

In matrix form: δV m

δµ
δεM

T
K A 0
AT 0 T
0 T 0

∆V m

∆µ
∆εM

+

F0
0

 = 0. (12)



We now subdivide the displacement vector for each element ve into a free part vf = aeV
m and

a part with boundary conditions vb = Me∆ε
M, where ae is the standard assembly operator and

Me is defined below:

ve =

[
vf

vb

]
=

[
ae 0
0 Me

] [
V m

∆εM

]
, (13)

where: (14)

Me =


...
MI

...

 and MI =

XI1 0 0 XI2 XI3 0
0 XI2 0 XI1 0 XI3

0 0 XI3 0 XI1 XI2

 . (15)

Here, I denotes the nodes with boundary conditions. So Me has as many rows as there are
boundary conditions.
Inserting this into (12) and subdividing the corresponding matrices K and A, leads to:

L[g(. . . )] =


δV m

δεM

δµ
δεM


T


Kff Kfb Āf 0
Kbf Kbb Āb 0
ĀT

f ĀT
b 0 T

0 0 T 0




∆V m

∆εM

∆µ
∆εM

+


Ff

Fb

0
0


 = 0. (16)

Implementation into a multi-scale FE formulation follows standard procedure as is described e.g.
in [1]. The derivation of the homogenised stiffness matrix and stress resultants for each Gauss
point also follows the same procedure as shown in [1].
As a remark on the implementation, it shall be noted, that for µ and εM we introduced four
additional nodes into every RVE, which are then part of every element in that RVE. While
the nodes carrying the Lagrange multipliers µ are left unbound, the ones carrying εM are fully
bound and internally loaded with their respective values.

3 Numerical Examples

3.1 RVE boundary conditions

Several RVE displacement boundary conditions were tested, following the ones proposed in [3].
Here, we will only use two of them. The first one, referred to as RB1, is a minimal configuration
which constrains only the rigid body motions of the RVE. The second one, referred to as RB2, is
a Hill-Mandel like boundary condition that fully constrains all nodes on all outer boundaries of
the RVE. In RB2 the corner nodes had to be released from all boundary conditions, in order to
allow a numerical solution as the system of equations would have been overdetermined otherwise.

3.2 Bending of inhomogeneous beam

The implemented homogenisation method was first tested on a homogeneous tension rod and on
a homogeneous beam in bending to varify basic functionality. The results obtained were exactly
the same as the results obtained with a Hill-Mandel approach and a full scale model with solid
3d elements. The results were independent from the chosen RVE boundary condition.
Next, we tested an inhomogeneous beam, that consisted of a soft matrix material and cube
shaped inclusions, that were a hundred times stiffer than the matrix material. the cubes made
up one ninth of the overall volume (see figure 1).
The results showed a slightly stiffer response for the RB2 configuration compared to RB1. The
results of the Hill-Mandel homogenisation were very close to the ones of the RB2 configuration.
The full scale model with only 1 inhomogeneity per cross section was significantly softer than both
coupled models. The full scale model with 2 inhomogeneities per cross section showed a response
very close to the one of the RB1 configuration. Results for a model with 3 inhomogeneities per
cross section could not be obtained as the inversion of the stiffness matrix exceeded the system’s
memory.
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Figure 1. Full scale model of the beam (left) with 2x2 blocks of inhomogeneities (dashed) in the cross
section and one such block on the right (also a depiction of the RVE)
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Figure 2. Reaction force over displacement for a cantilever with a single force on the free end, compared are
Irving-Kirkwood homogenisation (IK) with two different boundary conditions with a Hill-Mandel
homogenisation (HM) and a full scale modell with 1 (inh1) and 2 (inh2) inhomogeneities per cross section
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