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Micro Abstract
Beam elements demonstrate an efficient way of modeling large, thin structures if the assumed
kinematics are reasonable. Regarding arbitrarily shaped cross-sections and varying material
properties, difficulties arise in describing their behavior. A homogenization approach for a simple
Timoshenko beam using a representative volume element circumvents this problem. In addition to
that cross-sectional deformations can be taken into account.
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Introduction

Recently numerical homogenization schemes are widely used to model large structures while
taking the behavior of the micro structure into account. The calculation is then carried out with
the so called FE2 approach, meaning a second FE calculation is performed to get homogenized
material properties as well as stresses. Regarding the homogenization theory the Hill condition
is the most common approach and is well investigated when coupling scales with a full 3D stress
and strain state. However, the resulting workload is massive because even with the lowest order
3D element, eight RVEs per element need to be evaluated. A drastic reduction of this workload
can be achieved by using degenerated elements like beams, plates or shells. In this work beam
elements are considered, which leads to an evaluation of only one RVE per element. The main
goal is to recover the 3D stress state. This approach has already been used, mainly for shell
elements, but there is still a severe problem considering the shear deformation state. Here, the
coupling between shear force and bending moment distribution leads to a length dependency of
the RVE. This problem will be investigated and a possible solution is given as well as tested on
appropriate numerical examples.

1 Homogenization scheme

In order to perform the homogenization, macro strains have to be applied onto the micro scale.
Since homogenized values contain information about the cross-section, it is more appropriate to
talk about a meso scale. Here, coupling is performed for the Timoshenko beam assumptions
with the strain tensor ε = [ε, γy, γz, κx, κy, κz]. These strains have to be transferred onto the
RVE, therefore it is necessary to look at the equation system of one RVE
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Degrees of freedom are already separated into free (va) and fixed (vb) ones. Then the macroscopic
strains are related to vb with

vb = Aε δvb = Aδε ∆vb = A∆ε. (2)



For the Timoshenko beam theory the matrix A reads

A =

 x 0 0 0 xz −xy
0 x 0 −xz 0 0
0 0 x xy 0 0

 . (3)

Further details regarding evaluation of stresses and linearized stresses can be found in [2].

2 Boundary Conditions

As outlined in sec. 1, two scales, macro and meso scale, are coupled by transferring the beam
strains onto the latter. These strains are an average of the cross-sectional ones. Therefore suitable
boundary conditions (b.c.) need to be found to allow a deviation from a plane cross-section.

2.1 Problem: Shear deformation
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Figure 1. Shear deformation of the RVE and length dependency

At this point it is worth mentioning that periodic b.c. (PBC) lead to perfect results regarding
tension, bending and torsion (applied to the center of shear). But fail to give any results for the
shear stiffness, see fig. 1b. One way to circumvent this problem is to apply linear displacement
b.c. (LDBC) in length direction of the RVE, see fig. 1a. With these, two problems arise. The
first one is that the cross-section stays plane, which leads to some boundary effects. But as
long as the RVE is long enough, it has no impact on the results. A more severe problem is
depicted in fig. 1c. The diagram shows the resulting shear correction factor when varying length
with respect to height of the RVE ( l

h). As mentioned before, PBC lead to a shear correction
factor of zero. And in case of LDBC the shear correction factor is length dependent converging
against the solution of PBC with increasing ratio l

h . Therefore a conflict in choosing the correct

length for the RVE arises between a high value of l
h to reduce the influence of boundary effects

and a low ratio l
h to get a suitable shear correction factor (in fig. 1c l

h ≈ 0.5 for the analytical
solution). The reason for the length dependency of the shear stiffness can be found in fig. 2. In
this case a shear deformation leads to a constant shear force and a linear moment distribution.
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Figure 2. Beam shear deformation and stress resultant



2.2 Additional constraints

The objective is to remove the length dependency and make PBC usable. Regarding the length
dependency it is necessary to let the linear moment distribution vanish. Here, two possibilities
are regarded. The first one is to set the warping displacements constant over the length, which
can be achieved by linking all displacement increments in x-direction onto one surface. This
requires that each node must have one corresponding node on the surface. The second possibility
is to remove the linear distribution of moment in an average sense, leading to a constraint∫

RV E
σn · (y · λz + z · λy) dV = 0, (4)

where σn = [σx, σy, σz], λy = [λy1, λy2, λy3] and λz = [λz1, λz2, λz3]. All λ are functions of
the length direction x and equal, in shape, the moment distribution resulting from a shear
deformation with respect to the boundary conditions. In total these are additional 6 constraints.

To make PBC usable the second constraint has to remove rigid body rotation in case of shear
deformation. The idea is to apply an interface element in the center of the RVE and set its
rotation to zero in an average sense. This leads to∫

V
(σx − σx) (y · µz + z · µy) dV. (5)

For both, σx and σx, linear elasticity is assumed. The difference between them lies in the
evaluation of the strains. Here, σx is evaluated in a standard manner, while for σx, diplacements
uSx of the surface are replaced by the product of two angles and the distance to the center of
gravity, uSx = ϕy · z + ϕz · y. The Lagrangian parameter µy and µz enforce this balance in an
average sense. With the above given additional constraints, the RVE is structured like in fig. 3.
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Figure 3. RVE and functions for λ in eq. (4)

The boundaries ∂Ωl and ∂Ωr can be either clamped (LDBC) or linked (PBC). In case of LDBC
the interface is not present. Evaluating the moment distribution when shearing this system leads
to the two different functions for λ.

3 Numerical Examples

The introduced additional constraints are tested on an U-shaped profile. Geometrical information
are given in fig. 4a with h = b = 10 cm, s = 0.6 cm and t = 1.2 cm. To test the constraints, four
types of RVE boundary conditions are chosen, namely PBC with a linked domain (PBCLink),
PBC with the above given constraints eq. (4) (PBCConst), LDBC and LDBC with the constraint
(LDBCConst). Figures 4b and 4c show the resulting shear correction factor over a varying length
of the RVE. Here, PBCLink and PBCConst are truly length independent while LDBCConst
converge against the same shear correction factor with increasing length. As in the previous
example the shear correction factor for LDBC converges to zero and is unusable. The evaluation of
the RVE leads to shear correction factors κy = 0.6605 and κz = 0.1512 compared to κy = 0.6595
and κz = 0.1509 calculated with the element in [1]. Regarding the cross sectional deformation,
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Figure 4. Shear correction factor – U-shaped profile
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Figure 5. Example – Torsional buckling

the next example deals with torsional buckling. For this case material parameters are chosen
as E = 21000 kN/cm2 and Poisson’s ratio ν = 0.3 while the cross-section stays the same as
above. Figure 5a shows the system with L = 150 cm, load F = 100 kN and a small imperfection
MS = 0.1 kNm. The rotational degree of freedom ϕ is observed and results are depicted in fig.
5b. Geometrical non-linearity for the macro system is assumed, while the RVE is evaluated
geometrically linear (PBCConstLin) and non-linear (PBCConstNl). Euler buckling is the critical
load for the weak axis and the reference solution is evaluated with a geometrically non-linear 3D
brick element. The results in case of a geometrically non-linear evaluation of the RVE agree
very well with the reference solution, while the geometrically linear RVE is not able to represent
torsional buckling. The reason for the overestimation of the Euler buckling case is the wrong
imperfection.

Conclusion

A homogenization approach for the Timoshenko beam theory is presented with focus on shear
stiffness. The introduced additional constraints make it possible to use pure periodic b.c. and
get results independent of the RVE length. The resulting shear correction factors, and all other
cross-sectional values, are length independent and agree with the reference solution. With
a geometrical non-linear evaluation of the RVE the cross-sectional deformation is taken into
account and it is possible to recognize the torsional buckling case.
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