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Micro Abstract
The use of correct damping parameters is a decisive aspect in the numerical simulation of dynamical
problems and indispensable to predict and reduce reliably vibration amplitudes. In this contribution,
experimental and numerical studies to identify damping coefficients of simple geometries are presented.
In the experiments the focus was set to measure the pure material damping excluding all disturbing
environmental influences. In the numerical investigation, the thermoelastic approach was used.
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Introduction

Damping is defined as the irreversible transition of mechanical energy into other forms, mostly
thermal energy [7]. In all dynamic processes damping has a considerable effect on the amplitude,
the time history or even the existence of vibrations. Hence determing the sources and the
intensity of dissipation is important for a wide variety of applications.
To classify damping mechanisms the different physical causes should be analysed. It is often
distinguished between internal and external damping [7]. Basically external damping includes
all effects outside the system boundaries, e.g. air damping, acoustic radiation or friction at
the bearings. The term

”
Internal damping“ refers to all dissipating effects within the system

boundaries, e.g. the material damping or contact-surface friction between parts of the system.
In this work we focus on the measurement and calculation of material damping, therefore the
other damping phenomena are eliminated as well as possible.
Material damping is caused by anelastic material behaviour and several underlying physical effects.
Lazan gives a good review on this topic [3]. Probably the most significant cause of material
damping is the thermoelastic effect. Zener shows already in his work of 1937 the meaning of this
relation and describes an approach which is used till today [8]. The theory was often adapted
and developed for a wide field of applications, e.g. Micro- and Nanomechanical resonators.
Advanced theories can be found for example in [4] or [2]. The base of the thermoelastic effect is
the deformation caused by flexure. During the bending of a component a strain gradient occurs
over the thickness. This leads to an adiabatic change in temperature (Thomson’s Principle):

∆T = σα
T

ρC
(1)

where ∆T is the temperature change, σ is the flexural stress, α is the coefficient of thermal
expansion, ρ is the density of the material and Cp is the heat capacity. Since stress and strain
have different signs there is a temperature gradient along the thickness of the specimen. The
compensating heat flow causes further thermal strain, which mainly characterizes the resulting
heat flux [1]. The loss factor Q−1 is defined as the quotient of the damping energy and the total
strain energy [3]. This results in an expression for the maximal energy loss under the given
flexure:

Q−1 =
α2ET

ρC
(2)



Figure 1. Viscous decay curve

where E is the isothermal Young’s modulus. However the real energy dissipation is always
less than the one described in equation 2, because it depends strongly on the frequency. In
the equation developed by Zener this dependency is considered by the calculation of a peak
frequency f0 which leads to a maximum in energy dissipation. A detailed derivation of these
expressions can be found in [8].

Q−1 =
α2ET

ρC
· ff0
f2 + f20

(3)

f0 =
πλ

2d2ρC
(4)

where f is the considered frequency, λ is the thermal conductivity and d is the thickness of the
specimen.
To prepare damping analyses on complex components, simple geometries are ivestigated experi-
mentally and numerically. In a first step a series of thin aluminium beams is designed. They
show essentially one-dimensional behaviour and they are therefore suitable to study the damping
in pure beam flexure. The specimens have an increasing thickness from 1 mm to 9 mm and they
are dimensioned to have the same range of eigenfrequencies in each beam to get comparable
results concerning the geometry. Furthermore the experiments and simulations are extended to
a two-dimensional structure. Therefore, a thin plate with a thickness of 3 mm was produced to
investigate the plate modes. In this work the results of the beams and the plate are presented.

Experimental Studies

The most important aspect in the experimental setup is to avoid all unintented influences to
damping and to measure the pure energy dissipation within the material. To eliminate damping
sources from the surrounding air, all experiments are performed in a vacuum chamber. The
limited space leads to special requirements concerning the support and excitation of the specimen
as well as the measurement of the vibrations. A decisive factor for the damping of a system
is the friction especially at joints and bearings. To avoid this influence, the mode shapes are
determined in a modal analysis and the suspension is set to the nodes of vibration of the relevant
eigenmode. This implies that a new experimental setup is necessary for every mode shape. To
realize the suspension, small bore holes were drilled in the nodes of the respective eigenmode (d ≈
2 mm). This kind of support pretends free vibration modes and prevents rigid body movement.
The excitation of the specimen is achieved by an automatic impulse hammer, which is installed
inside the vacuum chamber and controlled from the outside. This method enables a minimum of
contact. To excitate the desired mode shape at the best, the point of excitation should have
a high deflection in the eigenform. The measurement of the vibration is contactless from the
outside and realized by a laser vibrometer. The velocity of the vibration is measured at one
charcteristic point of the eigenmode and a decay curve is recorded. In the case of sole material
damping there is a viscous decay, i.e. an exponential envelope curve can be calculated:



D(t) = C · e−ζωt (5)

where ω is the angular frequency, C is the initial displacement and ζ specifies the damping
coefficient that we use as a measure to describe and compare the damping. The damping
coefficient corresponds to half the loss factor Q−1. Every experiment was conducted at least five
times and the diagrams show the mean values of the results.
Figure 2 shows the results of the experiments on the aluminium beams with a thickness of 1 mm
to 9 mm. For each specimen the first three eigenfrequencies were considered. The diagram
includes the theoretical approach according to Zener [8] as well. It points up that the experiments
match the theory very well. There is a dependency of the damping coefficient on the frequency.
In higher frequency ranges the material damping becomes lower. Furthermore the dependency
on the dimensions becomes apparent. The thinner beams show higher damping values, however,
the differences become smaller within the thicker specimen.
The experimental results of the plate are shown in figure 3 together with the results of the
numerical studies. It can be seen that there is no clear relation between frequency and damping
coefficient like in the one-dimensional case. However, the diagram shows a correlation of the
mode shape and the damping ratio. Especially by considering mode 1 to mode 4 it becomes
clear that the bending mode shapes that deform similar to the one-dimensional beams, show
higher damping values than mainly torsional mode shapes.

Figure 2. Experimental damping coefficient of thin aluminium beams (thickness 1 mm to 9 mm) and
comparison to the theoretical damping according to ZENER [8].

Numerical Simulation

To verify the results numerically we used a finite-element analysis developed by Serra and
Bonaldi [6]. The underlying approach is the coupling of the mechanical behaviour with the
thermal properties. The shape functions of the elements do not only consider the nodal
displacement but also the temperature shift. This approach is already implemented in ANSYS
with 20-node brick elements. To calculate the damping coefficient in dependency on the frequency,
a frequency domain analysis was performed with a harmonic excitation in the range from 0 Hz
to 2000 Hz.



Figure 3. Numerical and experimental results for a thin aluminium plate (thickness 3 mm). For comparison,
the analytical solution according to Zener for a specimen thickness of 3 mm is shown.

Figure 3 shows the results for the aluminium plate with a thickness of 3 mm. The loss factor Q−1

is calculated by dividing the imaginary solution by the real solution in every substep integrated
over the whole model. Therefore poles appear at the resonant frequencies. For comparison the
diagram also includes the analytical solution for a beam with the same thickness according to
Zener [8]. This graph does of course not map the two-dimensional plate modes. First of all it can
be noted that the numerical solution matches the experimental results very well. As mentioned
earlier, there is a strong correlation between the damping coefficient and the mode shape. In the
flexure dominated mode shapes, e.g. eigenmode 2 and 4, the damping coefficient is significantly
higher. As a result the damping ratio varies strongly in the lower frequency range. In the higher
frequency range the mode shapes show more and more mixed deformation and the damping
coefficient only varies a little. Since the finite element formulation including the thermoelastic
coupled shape functions is very time and CPU-consuming we are looking for a faster and simpler
solution to consider the thermoelastic effect. A promising approach could be the separation of
different mode shape parts.

Conclusions

In the experimental damping determination all influencing damping sources from the environment
have to be eliminated to get the pure material dissipation. This includes the air resistance,
acoustic emissions into the surrounding or friction in bearings and joints as well as a possible
influence of measuring instruments. In a simplified approach we assume viscous dissipation
behaviour, i.e. the decay curve can be fitted by an exponential function. The material damping
can be calculated theoretically very well with the thermoelastic approach. In case of one-
dimensional bending of beams even the analytical formula developed by Zener leads to good
results. To simulate more complex plate modes there exist finite elements with thermoelastically
coupled shape function. They show good results in comparison to the experimental data, but
the simulation is very time-consuming.
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