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Micro Abstract
In this contribution a mixed hybrid shell element for the calculation of interlaminar shear and normal
thickness stresses of layered composite structures is presented. These stresses are decisive factors
for delaminations. The element formulation is based on the Reisser-Mindlin kinematics with an
inextensible director field. After static condensation the element has the standard shell degrees of
freedom. The numerical examples focus on failure caused by delamination.
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Introduction

Composite materials become more important in a wide range of industrial manufacturing.
Therefore effective numerical models are essential for the simulation of such materials. Especially
failure modes of laminates are of great interest. Here, interlaminar stresses, such as shear and
normal thickness stresses, are decisive factors for delamination. There are different possibilities
to compute these stresses. The use of solid or solid-shell elements [3], which model a full 3D
stress state are an obvious approach. In order to obtain interlaminar stresses with solid elements,
a minimum of 3 to 5 elements per layer are required. This leads to high numerical costs for the
computation of large multi-layered structures. Higher order shell elements are another possibility,
but they lead to problems when defining the boundary conditions of complex geometries. The
proposed shell formulation overcomes these problems. Based on [2], the element formulation
is expanded to geometrical non-linearity and the calculation of normal stresses in thickness
direction, see [1].

1 Shell kinematics and interpolation in thickness direction

The underlying shell kinematics are based on the Reissner-Mindlin theory with an inextensible
director field. Derived from the Green-Lagrangian strain tensor, the membrane strains ε,
curvatures κ and transverse shear strains γ are introduced and summarized in the vector

εg(v) = [ε11, ε22, 2ε12, κ11, κ22, 2κ12, γ1, γ2]T . (1)

The superposed displacement field ũ = ũiti is introduced, with components relating to a local
base system ti. The vector ũα with α = 1, 2 describes the out of plane warping displacements
and ũ3 the relative thickness displacements. The shape of ũ through the thickness is chosen as

ũ(ξ3) = Φ(ξ3)α . (2)

The vector α contains displacements at the nodes through the thickness of the laminate, see Fig.
1. The number of the components of α depends on the number of layers N . The warping and
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relative thickness displacements are elementwise constant and interpolated by cubic hierarchic
functions
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where −1 ≤ ζ ≤ 1 is a normalized thickness coordinate of layer i. Furthermore, ai is an assembly
matrix, which relates the 12 degrees of freedom of layer i to the components of α, while 1n

refers to the unity matrix. The total displacements of the shell

û = u + ξ3 (d − D̄) + ũ (4)

are obtained by superposition of the averaged displacements of the Reissner–Mindlin theory with
the fluctuation field (2). In (4) D̄ and d denote to the normal vector in reference and current
configuration respectively. The layer strains of a point in shell space with coordinates ξ3 are
obtained from

E = A1 ε+ A2α = [E11, E22, E33, 2E12, 2E13, 2E23]T (5)

where the matrices A1 and A2 contain the thickness coordinate and the differentiation of the
cubic interpolation functions respectively. The first part A1 ε refers to the physical shell strains
and the second part A2α to the superposed displacement field ũ.

2 Weak form of boundary value problem

The equilibrium of stresses and higher order stress resultants leads, with admissible variations
δθ := [δv, δσ, δε, δα, δλ]T with δv := [δu, δϕ]T to the weak form of the boundary value problem

g(θ, δθ) =

∫
Ω

[δεTg σ + δσT (εg − ε) + δεT
(
∂εW − σ

)
+δαT

(
∂αW + D23 λ− q̄

)
+ δλTg] dA+ gext = 0

gext = −
∫
Ω

δuT p̄ dA−
∫
Γσ

δuT t̄ ds ,

(6)

where λ containing the derivatives of strains and curvatures, In (6) σ refers to the vector of
stress resultants, ∂εW and ∂αW to the differentiation of the strain energy density with respect
to shell strains and the additional through thickness displacements α respectively. The weak
form contains the constraint g(α) = D23α, which enforces the correct shape of warping, Fig. 2.



Figure 3. Sandwich beam with constant loading

Material Geometry

Ec = 70 N/mm2 p = 1.0 N/mm2

νc = 0.3 L = 2000 mm

Ef = 70000 N/mm2 tc = 30 mm

νf = 0.3 N/mm2 tf = 0.5 mm

y0 = 100 N/mm2 b = 60 mm

ξ = 1000 N/mm2 b = 60 mm

Figure 4. Material and
geometrical properties

Because of the later use of the Newton interation, the weak form in Eq. 6 must be linearized.
This leads to a set of equations

L [g(θ, δθ),∆θ] := g(θ, δθ) + Dg · ∆θ = gext +
∫
Ω
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where
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which is the basis for the further FEM formulation. Matrix C refers to the material matrix for
the assumption of orthotropic material behavior.

3 Finite element formulation

The finite element formulation is based on the isoparametric concept for quadrilateral shell
elements with bilinear form functions. Interpolation functions for displacements and independent
quantities are chosen. Latter are eliminated by static condensation, which leads to the standard
shell degrees of freedom. Nodes at intersection have 6 DOFs (3 displacements, 3 rotations), all
other nodes have 5 DOFs (3 displacements, 2 rotations).

4 Examples

4.1 Sandwich strip

In the first example the results of a sandwich strip with constant loading on the upper and
lower surface are shown, see Fig. 3 The material properties are summarized in Fig. 4. A
geometrically and physically non-linear computation is carried out and the results for normal
thickness stresses Fig. 5 and transverse shear stresses Fig. 6 are shown for load factor λ = 4,
where plastification occurred. Further Fig. 7 shows the load-displacement curve at x = 0 for
the loading and unloading of the sandwich strip. The results show good agreement with the
reference solution, computed with 3d solid shell elements.
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Figure 5. σzz at
x = 390mm for λ = 4
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Figure 6. τxz at
x = 390mm for λ = 4
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Figure 7. Load factor vs.
displacement at x = 0
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Figure 8. Beam with
constant loading and
h = b = 10mm
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Figure 9. σxx at
x = 1500mm for λ = 15
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Figure 10. Load factor
vs. displacement at
x = L/2

4.2 Delamination

This example shows a beam with constant load with 10 isotropic layers, where E = 105N/mm2,
ν = 0.4, fracture energy Gf = 10−4N/mm and the ultimate stress Y0 = 10−5N/mm2, see Fig. 8.
While the load factor λ is increased, delamination due to shear stresses occurs in the middle layer
and spreads along the beam. This leads to a decrease of stiffness and a jump of interlaminar
normal stresses, see Fig. 9. The load-displacement curve is shown in Fig. 10, as well as the
reference functions for the beam without (Linear) and with full delamination (Delam.).

Conclusions

In this abstract a finite element shell formulation for the computation of layered structures is
shown. Interlaminar shear and normal stresses are obtained for linear, as well as geometrically
and physically non-linear problems. The presented shell element shows good agreement with the
solution of 3d models and overcomes the problems of these numerical expensive computations.
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