
Proceedings of the 7th GACM Colloquium on Computational Mechanics
for Young Scientists from Academia and Industry

October 11-13, 2017 in Stuttgart, Germany

Variational sensitivity analysis in the scope of
multiscale problems

Wojciech Kijanski1* and Franz-Joseph Barthold1

Micro Abstract
The combination of methods for shape optimisation with different established approaches for
analysis and simulation of complex heterogeneous materials on multiple scales based on numerical
homogenisation techniques opens a remarkable range of applications introducing design variables,
objective functions and constraints on different scales. To design micro-structures, the essential
steps for sensitivity analysis on multiple scales will be outlined and accentuated by illustrative examples.
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Introduction

Environments for numerical homogenisation and FE2 techniques are still a challenging area.
Nevertheless, their major benefit is the ability to analyse complex mechanical problems with
heterogeneous material behaviour on different scales. During the past two decades, several
authors and groups published their long and ongoing work and their experiences on this topic in
several journals and books, see [3,5–8] just to name a few. Within all presented frameworks, the
choice of representative volume elements (RVE), the choice of appropriate boundary conditions
and the determination of effective or homogenised parameters, i.e. of effective stresses P and
material properties A in Eq. (1), are essential

P =
1

V

∫
Ω
P dΩ =

1

V

∫
Γ
t ⊗X dΓ, A =

∂P

∂F
. (1)

Incorporation of this powerful methods for analysis of boundary value problems (BVP) on multiple
scales (MSA) within frameworks for structural optimisation (SO) allows to design materials
and microstructures, and to tailor macroscopic applications to their special requirements. Close
attention has to be paid to the integrated design sensitivity analysis (DSA) due to its key role
for accurate and efficient simulations, and also due to its potential for predictions.

1 Numerical homogenisation

The presented work is primarily based on the approach proposed in [3,5], where the authors refer
a finite dimensional minimisation problem with an averaged energy W , cf. Eq. (2)1, and a discrete
Lagrange functional WC, cf. Eq. (2)2, for alternative boundary conditions C = (D), (P ), (S), i.e.
linear or periodic displacements or uniform tractions on the boundary of the chosen RVE in
terms of appropriate boundary condition matrices AC and BC

W (u) =
1

V

∫
Ω
W (F ;X ) dΩ, WC(F ,X ) = inf

u
sup
λC

{W (u)−λC

[
AC ub − BC (F − I )

]
}. (2)

This saddle point problem can be solved using a standard Newton method, where variations
with respect to state variables (u i,ub) and the Lagrange multiplier λC are necessary. Here,
the indices (i, b) partition several quantities in inner values and values on the boundary of the



referred domain. The obtained equilibrium state allows the computation of effective stresses PC

and tangent moduli AC in matrix form by

PC = ∂F WC = BTC λC, AC = ∂2
F F

WC = ∂F PC = BTC
∂λC

∂F
= BTC K BC. (3)

Here, the condensed matrix K in terms of degrees of freedom on the boundary of the RVE is used,
see [5] for details and exact representations. The solution of the overall coupled macro-micro BVP
requires the solution of the macroscopic residual (4) in terms of resulting effective parameters P
and external macroscopic loads F (η)

R(u,X,u,X;η) =

∫
Ω
P : F

′
u (η) dΩ− F (η) = 0. (4)

In general, the solution of the macroscopic BVP requires variations of the residual R with respect
to the state parameters (u,u) for structural analysis and with respect to design parameters
(X,X) for structural optimisation. Furthermore, the variational relation in Eq. (5) has to be
fulfilled for any arbitrary state or design variation to guarantee equilibrium

R
′
= R

′
u +R

′
X +R

′
u +R

′
X = 0. (5)

This total variation R
′

contains variations of effective stresses P in each partial term and results
in well-known tangent operators, i.e. stiffness tangent operator for structural analysis and pseudo
load tangent operator for structural optimisation. All details on variational sensitivity analysis
on single scales, on variations of kinematical quantities or further quantities from continuum
mechanics, and explicit representations of pseudo loads matrices can be found in [1, 2, 4].

2 Sensitivity of effective stresses

The essential quantity P in the homogenisation scheme and especially its variation with respect
to state and design variables has to be investigated. It is sufficient to consider relations for
sensitivity analysis on single scales, which are presented in [1,2,4] in detail. In computations,
the effective stresses PC in Eq. (3)1 depend on the constant boundary conditions matrix BC

and the Lagrange multiplier λC. Therefore, the variation of effective stresses PC follows to

(PC(λC))′ =
∂PC

∂λC
(λC)′ = BTC

[
(λC)′u + (λC)′X

]
. (6)

In accordance to the concept in [5], the Lagrange multiplier λC corresponds to resulting reaction
forces on the boundary of the considered domain and as a consequence, relation (7)1 holds true.
The total variation of the Lagrange multiplier λC with respect to state and design parameters
results to Eq. (7)2 and requires partial variations of the residual Rb on the boundary

λC = Rext
b = Rint

b , (λC)′ = (λC)′u + (λC)′X = (Rext
b )′ = (Rint

b )′ = (Rint
b )′u + (Rint

b )′X . (7)

Remark 2.1 The total variation of a quantity f(u , s) with respect to design s is determined by

f ′ =
∂f

∂u
δu +

∂f

∂s
δs =

(
∂f

∂u
S +

∂f

∂s

)
δs (8)

with the sensitivity matrix S = −K−1P being the sensitivity of the state variable δu = Sδs.

Equal to the partition of the state, design parameters can be partitioned using indices (I,B).
Using defined subsets (i,b) and (I,B), all necessary quantities and relations can be separated

u =

[
u i

ub

]
, δu =

[
δu i

δub

]
,X =

[
X I

XB

]
, δX =

[
δX I

δXB

]
, (9)



and a partitioned representation of the physical residual (cf. Eq. (10)1) and of its variation or
linearised form (cf. Eq. (10)2) can be stated

R(u ,X ;η) =

[
Ri(u i,ub,X I,XB;η)

Rb(u i,ub,X I,XB;η)

]
, R′ =

[
R′i

R′b

]
=

[
(Ri)

′
u + (Ri)

′
X

(Rb)′u + (Rb)′X

]
. (10)

Here, the partial variations of the partitioned residual Ri,Rb with respect to the partitioned
state (u i,ub) and the partitioned design (X I,XB) are provided by the sub-matrices in Eq. (11).

R′u =

[
(Ri)

′
u

(Rb)′u

]
=

[
K ii K ib

K bi K bb

] [
δu i

δub

]
, R′X =

[
(Ri)

′
X

(Rb)′X

]
=

[
P iI P iB

PbI PbB

] [
δX I

δXB

]
. (11)

Application of Remark 2.1 to Eq. (7)2 and referring the partitioned variations of the residual in
Eq. (11), the partial variations of the residual on the boundary can be identified by

(Rint
b )′u =

∂Rint
b

∂u
δu = K bi δu i = K biS i δX , (Rint

b )′X =
∂Rint

b

∂X
δX = Pb δX . (12)

Finally, the explicit total variation of the Lagrange multiplier from Eq. (7)2 can be expressed by

(λC)′ = (Rext
b )′ = (Rint

b )′ = [K bi S i + Pb] δX , (13)

and is used for computations of required sensitivity information of effective stresses from Eq. (6).

3 Numerical investigations

In the context of multiscale optimisation problems, the sensitivity of reaction forces couples
referred scales, i.e. it represents the sensitivity relation of the homogenisation condition. The
advantage of presented relations in Eq. (12) and Eq. (13) is, that they hold true for optimisation
problems on single scales in a similar manner, so that they can be used as constraints in usual
optimisation problems on single scales. The purpose of the following example is to motivate
the application of the sensitivity information of reaction forces from Eq. (13) and to discuss its
influence on resulting effective stresses within the sensitivity analysis of multiscale optimisation

problems. Therefore, the deformation mode F =
[
1.2 1.1 0.1 0.05

]T
is utilised to evaluate

the microstructure in Fig. 1 for periodic boundary conditions, i.e. C = (P ), with arbitrarily
chosen design variables (a, b)ini = (0.75, 0.25) for the diameters. The target is to minimise the
volume J = V of the RVE and to control physical reaction forces g = FR ≤ Fmax

R on the
boundary. Moreover, defined side constraints s l = 0.1 ≤ s ≤ 0.8 = su have to be fulfilled.

The mathematical optimisation algorithm (SQP) used 28 iterations to obtain a minimum value
for the objective (reduction by approximately 27%). In parallel, the incorporation of reaction
forces as constraints gives the advantage to reduce them by approximately 25% compared to the
initial design and has a direct influence on the reduction of effective stresses, cf. Eq. (14)

P
ini
P =

[
26.14 10.32 5.59 5.36

]T
, P

opt
P =

[
15.62 6.80 2.56 2.43

]T
. (14)

When it comes to local stresses in the chosen RVE as quantities of interest, Fig. 1 proves, that
in this example the maximum amplitude of local Von-Mises stresses can be reduced too, i.e.
σini

max = 960.85 and σopt
max = 509.55. The final design parameters result to (a, b)opt = (0.80, 0.60).

All discussed results, i.e. for the objective, the constraint and the local stress distribution
for initial and optimised design, are shown in Fig. 1. The incorporation of the sensitivity
information for reaction forces is necessary to be able to control the homogenised and effective
parameters on the macroscale. This statement holds true for any other choice of microscopic
material representation or RVE. In this example, the possible number of design variables is small.
Nevertheless, when it comes to multiscale optimisation problems, the amount of possible design
parameters might become enormous due to arbitrary design parameters on the macroscale and
several combinations of design parameters for the design of microstructures.



(a, b)ini

(a, b)opt

Figure 1. Left: Optimisation results (objective J and constraint g) over iterations. Middle: Initial (top) and
optimised (bottom) design. Right: Von-Mises stress distribution for initial (top) and optimal (bottom) design.

Conclusions

Formulations of multiscale methods, based on homogenisation in terms of quantities on the
boundary of referred domains, can be enhanced by presented elements from variational sensitivity
analysis. This extension is predestinated for predictions about the behaviour on different scales,
and especially for improvements and design of underlying micro-materials and structures.
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