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Micro Abstract
We present a framework for isogeometric analysis on unstructured quadrilateral meshes. Acknowledging
the differing requirements posed by design and analysis, we propose the construction of a separate,
smooth spline space for each, while ensuring isogeometric compatibility. A key ingredient in the
approach is the use of singular parameterizations at extraordinary vertices. We demonstrate the
versatility of the approach with applications in design and analysis.
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Introduction

Modeling arbitrary genus geometries with a finite number of tensor-product patches invariably
leads to surface representations over unstructured quadrilateral meshes containing extraordinary
points, i.e., internal vertices where µ 6= 4 edges meet. On regular parts of the mesh, where the
quadrilateral elements are arranged in a locally-structured fashion, smooth splines can be easily
built. However, there is no canonical way of doing the same on an unstructured arrangement of
quadrilateral elements. Application of smooth splines over unstructured meshes is of considerable
interest within the field of isogeometric analysis [1], and a myriad of approaches have been
explored that focus on the design and analysis of geometries built over such meshes; see, e.g., [4].

Taking inspiration from [2,3], we present a novel framework for construction of smooth splines
on unstructured quadrilateral meshes, providing a solution in the context of both geometric
modeling and isogeometric analysis. Geometric modeling is a highly visual process and is driven
by practical considerations. It is important to have simple, intuitive modeling tools that can be
used to build visually pleasing geometries. Computationally analyzing the designed geometric
objects, on the other hand, is very much motivated by accuracy and stability considerations.
Keeping the above in mind, we acknowledge the differing requirements posed by design and
analysis and propose a two-pronged solution. We aim to construct two spline spaces, called the
design and analysis spaces, for the purposes of geometric modeling and isogeometric analysis,
respectively. The general requirements imposed on the functions that span each space are
summarized in Figure 1. We refer the reader to [6] for full details on the complete framework.

1 Construction of Unstructured Spline Spaces

We will build spline spaces suitable for design and analysis over a mesh M that is standardized,
i.e., for any given extraordinary point, its spoke edges have the same knot spans. We focus on
the construction of smooth, linearly independent, locally supported spline functions over M.
The design and analysis spline spaces are then defined as the spans of these splines. For the sake
of simplified exposition, we restrict ourselves to bi-cubic splines, but the ideas can be extended
to higher degrees. The construction of smooth spline basis functions over M is essentially done
in a two-step process [6]:
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Figure 1. A summary of the properties achievable within our unstructured spline framework. For the specific
task of building geometric models, the spline basis (spanning the design space, SD) is, in particular, associated
with an intuitive control net and maximizes the regions of C2 smoothness; this necessarily entails non-nested
geometries under refinement during geometric modeling. Once the geometric model has been built, an analysis
space, SA, is built on the same mesh ensuring isogeometric compatibility, SD ⊆ SA. Thereafter, for performing
analysis on the geometry, it is possible to build a nested sequence of spaces such that the geometric model
stays invariant.

1. Macro extraction: For each element ω ∈ M, we construct a linear map from spline
degrees of freedom to ω-local Bézier degrees of freedom. Such a linear map is called the
Bézier extraction operator, and its transpose the macro spline extraction operator.

2. Micro extraction: Spline basis functions defined using the macro extractions on each
element will be C2 smooth except on the 1-ring elements around the extraordinary point,
called irregular elements. We will rectify this using the split-then-smoothen approach:

(a) split each irregular element into 2× 2 sub-elements using de Casteljau’s algorithm;

(b) transform the inner Bézier sub-elements adjacent to the extraordinary point into
singular but smooth D-patches, using a so-called smoothing matrix.

This will yield spline basis functions that are linear combinations of Bernstein basis functions
defined on the 2× 2 sub-elements of the split 1-ring elements, and the corresponding linear
map is called the micro spline extraction operator.

A single spline function is thus built for each spline degree of freedom. For geometric model-
ing, conforming with the norm, the degrees of freedom are vertex-based control points. For
isogeometric analysis, some of the vertex-based control points are excluded and new ones on
element interiors are introduced. Note that macro extractions depend on the particular choice
of spline degrees of freedom; details can be found in [6]. The corresponding control structures
are illustrated in Figures 2a and 2b, respectively, and the associated spline functions lead to the
so-called design and analysis spaces, respectively. Moreover, the construction of SD and SA are
such that isogeometric compatibility, SD ⊆ SA, is ensured.

The framework is enacted as follows: geometric models are built using SD and, once finalized,
are represented as members of SA; this representation is exact since SD ⊆ SA. Subsequently,

1Contingent upon the properties of the smoothing matrix [6].



(a) Design degrees of freedom (b) Analysis degrees of freedom

Figure 2. These figures illustrate spline control nets (near extraordinary points) used for geometric modeling
and isogeometric analysis. Active control points have been plotted in black and inactive ones in red. For
design only vertex-based control points are used, while for analysis we introduce face-based control points near
extraordinary points and forgo reliance on traditional control nets in favor of creating nested spaces.

since nested spaces can be built in the analysis phase, the geometry can be exactly preserved
when refining during the analysis phase. Other features of the design and analysis spaces are
shown in Figure 1.

2 Application in Design and Analysis

We now consider a Cahn–Hilliard problem over the surface of a double-doughnut Ω. The problem
models spinodal decomposition of a binary fluid and is governed by a fourth-order non-linear
PDE. The surface, modeled using the design space, has been illustrated in Figure 3. For solving
the PDE, we switched to the analysis space and performed a few steps of global refinement in
order to satisfactorily resolve the evolving interface. The following non-dimensional form of the
problem was solved:

∂c

∂t
= ∇Ω · (c(1− c)∇Ω(N2µc −∆Ωc)) on Ω× [0, T ] ,

c(x, 0) = c0(x) on Ω ,

where ∇Ω and ∆Ω are the surface gradient and Laplace–Beltrami operators, respectively, and

µc := 1
3 log

(
c

1−c

)
+ 1− 2c. The analysis mesh had 12, 382 degrees of freedom, and the initial

value c0 was determined by randomly perturbing the chosen initial volume fraction c̄ = 0.5; the
corresponding value of N2 was 3, 282.5. The results are shown in Figure 4. Steady state was
reached for the configuration in 650 time-steps.

Further examples in design and analysis are described in [6].

Conclusions

We presented a C1 construction of bi-cubic splines on unstructured quadrilateral meshes contain-
ing extraordinary points. Appreciating the differing requirements posed by geometric modeling
and isogeometric analysis, separate spline spaces for both fields were built, and their suitability
for applications in these fields was demonstrated.

A key feature of our construction is its locality, making it highly portable. For example, it
would be straightforward to combine the construction here with the one in [5] for smooth polar
splines. Additionally, performing such a construction in the context of locally refinable spline
technologies (based on local tensor-product structures) should be straightforward; see [6] for its
integration in the T-spline framework.



Figure 3. The surface of a double-doughnut, modeled in the design space, is the domain of interest for the
Cahn–Hilliard problem. The iso-parameter lines and colors indicate the locations and valences (6) of the
extraordinary points.

(a) t = 0 (b) t = 4.3197× 10−5 (c) t = 1006.4156

Figure 4. The initial volume-fraction distribution is shown together with its time-evolution for the Cahn–
Hilliard problem over the surface in Figure 3. The meshes used for the computation contained 12, 382 degrees
of freedom.
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