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Micro Abstract
We present a new and completely parallel approach for fluid-structure interaction, which includes also
contact between the elastic structures. Our approach is inspired by the fictitious domain method
and makes intensive use of variational transfer between the solid and the fluid and on the possibly
contacting surfaces between solids. We present the discretization, the setup of the variational transfer,
and efficient methods for the solution of the arising non-linear problems. We present 2D and 3D
benchmarks, and a tricuspid heart valve.
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Introduction

In this work we present a fluid-structure interaction (FSI) framework based on the fictitious
domain method [1] by using a parallel L2-projection [6] for coupling the two problems and
transferring data between the fluid and the solid meshes. Our final goal is simulating the
behavior of the heart valve during the entire heartbeat, which requires solving the contact arising
between the three leaflets during the closure phase.

1 Method

The main idea of the fictitious domain method is modeling the solid phase as immersed in a
background fluid phase. The fluid is described in an Eulerian fashion (fixed mesh), while we use
Lagrangian meshes for the solid structure. The coupling between the two phases is achieved
with overlapping domain decomposition. Specifically, our coupling is constructed by means
of L2-projections where a Lagrange multiplier is used to weakly enforce the velocity vector
constraint along the interface-boundary between the solid and the fluid.

For solving the arising nonlinear-system of discrete equations we adopt a staggered approach
within a fixed-point iteration, hence the fluid and the solid problems are solved separately with
the following four steps: First, we transfer velocities from the solid mesh to the fluid mesh.
Second, we solve the fluid dynamics problem by imposing the velocity constraint in the overlap.
Third, we compute and transfer the reaction force from the fluid mesh to the boundary of the
solid mesh. At last, we solve the solid mechanics problem by imposing the reaction force on the
solid (Neumann) boundary.

1.1 Mortar projection

Let V h
s = V h

s (T h
s ) (mortar) the finite element space associated with the solid mesh T h

s , and
V h

f = V h
f (T h

f ) (non-mortar) be the finite element space associated with the fluid mesh T h
f .

In the FSI context we use V h
s and V h

f for describing the velocities in the respective phases.
For the introduction of the projection operator we define a suitable discrete space of Lagrange
multipliers Mh

FSI . Here the Lagrange multiplier space is associated with fluid mesh, in fact we
choose Mh

FSI = V h
f .



Now we proceed with the definition of the projection operator P : V h
s → V h

f . For a function

vh ∈ V h
s we want to find wh = P(vh) ∈ V h

f such that following weak-equality condition holds:∫
Ih

(vhs − P(vhs )) · λh
FSI dV =

∫
Ih

(vhs −wh
f ) · λh

FSI dV = 0 ∀λh
FSI ∈Mh

FSI , (1)

where Ih = T h
s ∩ T h

f is the intersection between the solid mesh and fluid mesh. We express vhs ,

wh
f and λh

FSI in terms of their basis functions, i.e., vhs =
∑

l∈Js v
l
sϕ

l
s, w

h
f =

∑
j∈Jf w

j
fθ

j
f and

λh
FSI =

∑
k∈JFSI

λkFSIψ
k
FSI , where Js, Jf and JFSI are the index sets associated with the nodes

of the respective meshes. Hence, we get the so called mortar integrals: Bk,l =
∫
Ih ϕ

l
s ·ψk

FSI dV,

and Dk,j =
∫
Ih θ

j
f ·ψ

k
FSI dV, which can be rewritten in the following algebraic form:

vf = D−1Bvs = Tvs.

The transpose of T is used to transfer the reaction force from the fluid to the solid grid.

For discretizing the contact problem between solids we adopt a similar approach based on the
L2-projection [2], where, instead of enforcing the weak-equality condition (1) in the volume, we
enforce a weak-inequality condition on the predicted contact surface. The discretization of the
Lagrange multiplier is done by means of the biorthogonal basis [7] which allows us to have a
diagonal operator D, which implies a cheap computation of the matrix T .

In the distributed memory of super-computers meshes are arbitrarily distributed and generally
unrelated. In [6] we make use of parallel bounding-volume-hierarchies and space-filling curves.
This technique allows us to find the intersections and automatically balance the computation of
the transfer operator T , for both volume and contact without prior knowledge on the distribution
of the meshes.

1.2 Contact solution strategy

The algebraic system resulting from the contact problem is solved by adopting a semi-smooth
Newton method for the spatial discretization which allows us to treat the inequality constraints
arising from the contact problem. In transient settings, for resolving the non-smooth effects
caused by the non-penetration and the persistency condition, a suitable stabilized Newmark
scheme [5] is required.

2 Numerical Results

The results are obtained by combining the parallel Finite Element library MOOSE1 with Utopia2.
The library MOONoLith3 is used for identifying the overlapping regions between the fluid and
the solid mesh and for coupling the fluid-dynamics and the solid-mechanics problems, and for
identifying the contact boundary between solids.

2.1 Validation of the FSI and contact code

We validated the FSI framework by using the benchmark proposed by Gil [3] which consists of
two flapping beams embedded into a two-dimensional fluid channel. The fluid is supposed to be
Newtonian, while an incompressible Neo-Hookean material is used for the two solid membranes
which are characterized by different stiffnesses. A pulsatile non reversible flow is applied as a
Poiseuille flow at the inlet (Figure 1a), whereas a non-slip condition is employed on both the
bottom and the top of the fluid channel. By analyzing the displacement field of a point placed on
the top beam, we get results in very good agreement with those obtained from Gil (Figure 1b).

1http://mooseframework.org
2https://bitbucket.org/zulianp/utopia
3https://bitbucket.org/zulianp/par_moonolith
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(a) Set-up. (b) Result.

Figure 1. Fluid-structure interaction benchmark.
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Figure 2. Benchmark for contact between solids.

We validated our contact framework, based on the surface mortar-projection, by solving a
quasi-Hertzian problem (Figure 2). By applying corresponding Dirichlet conditions on the top
of the semi-sphere, we push the semi-sphere onto the lower plane, where we observe that the
normal stresses at the contact boundary correspond to the analytical solution [4].

2.2 Scaling and examples

Figure 3 shows weak and strong scaling studies [6] for the assembly of the transfer operator.
We run our experiments on the Piz-Daint supercomputer at the Swiss Supercomputing Center
(CSCS) utilizing up to 12288 cores. The experiments, with different output sizes for the volume
projection, show proper scaling behavior even when the problem is subject to imbalance due to
the output-sensitivity arising from the computation of intersections.

Figure 4 shows the results of several simulations ranging from multi-body contact problems to
an heart-valve interacting with the blood-stream.
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Figure 3. Scaling studies for the parallel volume projection we employ for the fluid-structure coupling (a and
b) and for the contact (c).



(a) Multi-body contact. (b) Cut on a three-point contact region.

(c) An heart-valve interacting with the fluid. (d) Contact between solids inside the fluid.

Figure 4. Example simulations.

Conclusions

In this work developed a framework for the FSI problem including contact between solids. The
framework is first validated within the different components by first adopting the FSI benchmark
proposed by Gil, then by replicating the normal stresses at the contact boundary of Hertzian
contact, and finally by showing the parallel performance of the assembly of the transfer operator.
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