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Micro Abstract
In this contribution an isogeometric contact treatment by the penalty method is presented. The
symmetry preserving formulation, also known as the two-half-pass formulation, is utilized together with
the Gauss-point-to-segment discretization. A particular attention is payed to the contact detection, i.
e. to the closest point projection of a point onto a NURBS patch. The problem of contact pressure
post-processing is also presented in more detail.
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Introduction

Contact analysis based on traditional finite elements utilizes element facets to describe a contact
surface. The facets are C0-continuous so that surface normals can experience jump across facets
boundaries leading to artificial oscillations in normal and tangent contact forces. The geometric
non-smoothness is usually attacked by contact smoothing techniques, where contact interface is
approximated by various species of splines [8, 9, 11].

Another remedy to the geometric discontinuity provides isogeometric analysis (IGA) [3]. The
fundamental idea is to accurately describe a physical domain of interest by a proper mathematical
representation (e.g. B-Spline, Non-Uniform Rational B-Spline (NURBS), etc.) and then utilize
the same basis for the analysis. This is in contrast with the classical finite element method
where the basis is given in advance by the element type and the geometry of physical domain is
then only approximated with the aid of isoparametric mapping. Isogeometric NURBS-based
contact analysis [1] has some additional advantages: preserving geometric continuity, facilitating
patch-wise contact search, supporting a variationally consistent formulation, and having a
uniform data structure for the contact surface and the underlying volumes.

In this contribution a simple yet powerful symmetry preserving contact formulation [2] is
employed in the IGA framework. It is based on the Gauss-point-to-segment discretization where
contact constraints are enforced at the Gaussian quadrature point level by the penalty method.
The topics of contact detection and contact pressure post-processing are also briefly mentioned.
The performance of the overall algorithm is presented by means of Hertzian contact problem.

Two-half-pass Gauss-point-to-segment contact algorithm

An essential contact kinematic quantity is the normal gap function

g
(i)
N (x(i)) = −

(
x(i) − x̄(k)

)
· n̄(k), ∀x(i) ∈ γ(i)

c , (1)

which can be understood as the signed distance function. Here x(i) ∈ γ(i)
c ∈ Rnsd , where nsd

indicates the number of spatial dimensions, is the position vector of a point on the potential

contact boundary γ
(i)
c . The superscript (i), i ∈ 1, 2 denotes the index of the body. To generalize



the notation, let us introduce another body index as (k) := {1, 2}\ (i), i.e. (k) is the complement
body to the body (i). The quantities denoted by (•̄) are related to the closest point projection
of the point x(i). Finally n̄(k) ∈ Rnsd is the normal vector. Note that according to our definition,
the gap is open, i.e. bodies are not in contact, when the normal gap function is negative.
Conversely, a positive value of the normal gap function indicates penetration of the bodies. The
physical behaviour at the contact boundary in the normal direction can be described using the
Hertz-Signoriniho-Moreau conditions

p(i)
c ≥ 0, g

(i)
N ≤ 0, p(i)

c g
(i)
N = 0, ∀x(i) ∈ γ(i)

c . (2)

where p
(i)
c (x(i)) ∈ R is the contact pressure. This conditions are known in mathematical

optimization as the Karush–Kuhn–Tucker (KKT) conditions. A particularly simple formulation
can be obtained by the regularization of the contact pressure by the penalty method. It consists
in replacing the unknown contact pressure field with a new one which is dependent on the
displacement field. The contact pressure is prescribed by the function

p(i)
c = εN〈g(i)

N 〉, (3)

where εN ∈ R is the normal penalty parameter and 〈•〉 := |•|+•
2 are so-called Macaulay’s brackets.

Employing the well known principle of virtual work, the balance of linear momentum with
consideration of the contact constraints can be symbolically formulated in the weak sense as

δΠ =

2∑
i=1

(
δΠ

(i)
int + δΠ

(i)
ext + δΠ(i)

c

)
= 0, (4)

where δΠ
(i)
int consists of stress divergence term, δΠ

(i)
ext comprises of terms expressing virtual work

due to volume and surface forces, and δΠ
(i)
c denotes virtual work done by contact forces, which

is defined as

δΠ(i)
c = −

∫
γ
(i)
c

δu(i) · εN〈g(i)
N 〉n̄

(k) dγ(i). (5)

After spatial discretization by the finite element method, one ends up with non-linear system of
equations

Fint(d) + Fext(d) +
2∑
i=1

F(i)
c (d) = 0, (6)

where d is the vector of nodal displacements, Fint is the vector of equivalent internal nodal

forces, Fext is the vector of equivalent external nodal forces, and F
(i)
c are the vectors of equivalent

contact nodal forces. The last mentioned are assembled by the standard finite element procedures
from the local counterparts

Fs(i)c = −
∫
γ
s(i)
c

εN

〈
g

(i)
N

〉
Ns(i) dγs(i), (7)

where superscript s indicates the number of contact segment of the element, and Ns(i) is the
matrix defined as

Ns(i) =

 R1n̄
(k)

...

Rnscpn̄
(k)

 , (8)

where Rj , j = 1, . . . , nscp are the contact segment NURBS basis functions, and nscp indicates
the number of contact segment control points. Note that the global vectors of the control point
contact forces are then assembled in a conventional manner.



Contact detection

By the contact detection it is understood the evaluation of the normal gap function (1) in

all Gaussian quadrature points of the potential contact interface γ
(i)
c . In particular, for each

Gauss-point x(i), it is necessary to calculate the closest point projection x̄(k) = x(k)(ξ̄), which
has to satisfie the orthogonality condition

(
x(i) − x(k)(ξ̄)

)
· ∂x

(k)(ξ̄)

∂ξ
= 0, (9)

where ξ ∈ Rnnpd are the convective coordinates which parametrizes the potential contact

boundary γ
(k)
c , and nnpd indicates the number of parametric dimensions. The importance of this

procedure results from the fact that this evaluation must be performed in each iteration of the
non-linear solver. Computational time of this procedure determines the resulting time demands
of the whole contact algorithm. Indeed, the simplest contact detection procedure consists in
solving (9) by a non-linear solver, such as the Newton-Raphson method, in the loop over slave
quadrature points and master contact patches. The ability to perform loop over contact patches,
instead of contact segments, is one of the most important benefits of the isogeometric contact
analysis.

It is obvious that searching for the closest point in a cycle over all quadrature points is not
optimal, because if the bodies are not in contact, the exact value of the gap function is not
necessary. Instead, only logical value is sufficient to indicate that no contact occurs. Therefore,
the contact detection is usually divided into two phases: a global search, which consists of
effectively detecting and sorting all potential candidate slave points and their corresponding
candidate master segments, and a local search for closest point projections of slave points onto
master segments.

The closest point projection of a point onto a free-form-surface (FFS), as spline surfaces are
sometimes called, also poses a common problem to computer graphics. Therefore, these methods
can be directly employed in the isogeometric contact analysis. Computational methods for the
orthogonal projection of points in CAD/CAM applications were presented in a review paper [5].
In order to guarantee robustness of the calculation, it is recommended to initially employ a
subdivision based global scheme, followed by a Newton-type iteration method. An interesting
alternatives to the Newton-type iteration method are the geometric iteration methods [6]. In
particular the torus approximation method [7] has proven to be a very powerful technique,
especially for NURBS surfaces of higher order where the costly evaluation of base functions and
their derivations by recurrent formulas must be carried out.

Contact pressure post-processing

Here employed post-processing scheme for the contact pressure was originally proposed by
Sauer [10]. The idea is to calculate control point contact pressures pcA to get post-processed
contact pressure in the form

pp(i)
c =

ncp∑
A=1

RAp
(i)
cA
. (10)

The calculation of the control point values of the contact pressure is inspirited by the mortar
method [4]. In particular, control point pressures are evaluated as a weighted average

p(i)
cA

=

∫
γ
(i)
c
RAεN

〈
g

(i)
N

〉
dΓ(i)∫

Γ
(i)
c
RA dγ(i)

. (11)
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(a) Parameters of the IGA mesh.

-1.0000 -0.6495 -0.2971 0.0549
σ∗y(Pa)

(b) Contours of σ∗
y stress component.

Figure 1. Hertzian contact problem.
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(a) p = 4, εN = 104
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(b) p = 4, εN = 106

Figure 2. Contact pressure distribution.

Numerical test: Hertzian contact problem

As the numerical example, the classic Hertzian problem is investigated. In particular, the plane
strain contact of cylinder with rigid plane is considered (see Fig. 1(a)). The material parameters,
geometry, and boundary conditions as well as IGA mesh parametrization are taken from the
work of Temizer et al. [4].

For illustration, the contours of the normalized vertical stress component σ∗y = σy/po are showed
in Fig. 1(b). The detail study of contact pressure distribution in dependence on the contact area
radius a is presented in Fig. 2. In this figure, the plot on the left was obtained for the penalty
parameter εN = 104 N/m3 whereas the plot on the right was obtained for εN = 106 N/m3. In
each the sub-plots of Fig. 2 there is analytical solution, the contact pressure at Gauss points
pcg = εNgNg , and a post-processed contact pressure denoted in legend as NURBS.

One can see in Fig. 2 that post-processed contact pressure shows very good agreement with the
analytical solution. On the other hand, the contact pressure at Gauss points exhibits oscillations
that increase with the polynomial order of the basis functions. This is the expected result
because the GPTS formulation leads to the over-constrained system of equations. Note that
calculation of the weighted average quantities is the bottom line of the mortar-KTS algorithm [4].
While Eq. (11) was used only once in a post-processing solution, the mortar FE algorithm uses
this formula in each iteration of the non-linear solution to obtain the correct number of contact
constraints.



Conclusions

In this paper, a simple large deformation frictionless contact formulation [2] was presented in the
IGA framework. An essential feature of this formulation is an unbiased treatment of the contact
residual, which means that there is no need to distinguish between master and slave bodies.
The proposed algorithm fully exploits the features of the isogeometric analysis, namely that the
local contact searching can be done in the loop over patches rather than over elements. The
performance of the resulting IGA contact algorithm was tested by means of the Hertz contact
problem. It was demonstrated that oscillations of the Gauss point solution can be efficiently
eliminated in post-processing.
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