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Micro Abstract
We present a two-scale finite element (FE2) formulation for transient linear heat flow. For the sub-scale
problem, we use spectral decomposition in order to to establish a reduced basis. We discuss a few
methods to estimate the error introduced by the reduction, and in particular we aim for explicit
bounds on the error in (i) energy norm and (ii) an arbitrary “quantity of interest”. Numerical results
confirm the validity of the computed error bounds.
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Introduction

Multiscale methods are of high interest in the engineering community due to their ability to
predict the overall response, while accounting for heterogeneities on the underlying scales. One
standard approach is the so-called FE2 procedure, where the classical constitutive relation is
replaced by a boundary value problem on a Representative Volume Element (RVE). In practice
this means that a new finite element problem is solved in each macroscale (quadrature) point.
For fine scale macroscale meshes this methods can be computationally intractable, because of
the numerous RVE problems, and it is therefore of interest to reduce the computational cost.
We here present a method for Numerical Model Reduction (NMR) for the solution of the RVE
problems.

1 Two-scale Formulation Based on Computational Homogenization

Consider the transient heat flow problem, with linear constitutive relations, in terms of finding
the temperature field u(x, t) ∈ Ω× [0, T ] governed by

cu̇− (k∇u) ·∇ = 0 in Ω× (0, T ], (1a)

u = up(t) on ∂Ω× (0, T ], (1b)

u = u0(x) in Ω at t = 0, (1c)

where c = c(x) is the volume-specific heat capacity and k = k(x) is the thermal conductivity.
We also introduced standard boundary1 and initial conditions; prescribed temperature up on ∂Ω
and u(t = 0) = u0(x). The standard weak space-time format of (1) reads: Find u ∈ U such that∫

I

∫
Ω

[
vcu̇+ ∇v · k∇u

]
dΩ dt+

∫
Ω

[vcu]|t=0 dΩ =

∫
Ω

[vcu0]|t=0 dΩ ∀v ∈ V, (2)

where v is the test function and where U , V are appropriate trial and test spaces, respectively.

To obtain a two scale formulation of (2) we introduce (i) running averages2 and (ii) scale-
separation via first order homogenization, cf. Larsson et al. [3]. In each macroscale (quadrature)

1For simplicity we consider the case where the full boundary is subjected to Dirichlet boundary conditions.
2We introduce 〈•〉� = |Ω�|−1 ∫

Ω�
• dΩ for averaging the quantity • over an RVE with volume |Ω�|.



point x̄ we thus decompose u such that

u(x, t) = ū(x, t) + ∇ū(x, t) · [x− x̄]︸ ︷︷ ︸
=Aū

+uµ(x, t), (3)

where ū is the homogenized field, and uµ the fluctuation field. The test function is decomposed
similarly, e.g. v = v̄ + ∇v̄ · [x− x̄] + vµ. By only considering the homogenized test function (i.e.
setting vµ = 0) we obtain the homogenized macroscale problem: Find ū ∈ Ū such that

A(Aū+ uµ,Av̄) = L(Av̄) ∀v̄ ∈ V̄, (4)

where Ū , V̄ are appropriate function spaces for the homogenized field, and where A(•, •) and
L(•) are defined by

A(u, v) =

∫
I

∫
Ω

[
〈vcu̇〉� + 〈∇v · k∇u〉�

]
dΩ dt+

∫
Ω
〈vcu〉�|t=0 dΩ (5)

L(v) =

∫
Ω
〈vcu0〉�|t=0 dΩ. (6)

For each point x̄, we set v̄ = 0 and obtain the microscale problem: Find uµ ∈ Uµ such that

A�(Aū+ uµ, vµ) = L�(vµ) ∀vµ ∈ Vµ, (7)

where Uµ, Vµ are appropriate function spaces for the trial and test function of the fluctuation
field and where the two RVE space-time forms are defined by

A�(u, v) =

∫
I

[
〈vcu̇〉� + 〈∇v ·∇u〉�

]
dt+ 〈vcu〉�|t=0, (8)

L�(v) = 〈vcu0〉�|t=0. (9)

2 Numerical Model Reduction (NMR)

With the goal of simplifying the microscale computations we will introduce Numerical Model
Reduction (NMR) of the fluctuation field. We first introduce an alternative decomposition of u

u(x, t) = ustat{x; ū(t),∇ū(t)}+ utrans(x, t), (10)

where ustat is the stationary part, and utrans the transient fluctuation part. We now introduce a
reduction of utrans

utrans(x, t) ≈ utrans,R(x, t) =

NR∑
a=1

ϕa(x)ξa(t), (11)

where {ϕa}NR
a=1 are a set of linearly independent spatial modes, and ξ are time dependent “mode

activity” coefficients. In this work - since this is a linear problem - we use Spectral Decomposition
to compute the modes and follow closely to Aggestam et al. [1]. Hence, we obtain the modes
from the generalized eigenvalue problem

〈∇δu · k∇ϕa〉� = λa〈δucϕa〉� a = 1, 2, . ., NR, (12)

〈ϕbcϕa〉� = δab a, b = 1, 2, . ., NR, (13)

where δu is a spatial test function on the RVE.

The result of introducing (11) in the microscale problem (7) is a set of NR ordinary differential
equations

ξ̇a + λaξa = fa(t; ˙̄u,∇ ˙̄u)

ξa(0) = ξa,0

}
a = 1, 2, . ., NR, (14)

which can be solved in an efficient manner. When the mode coefficients are solved for the
effective response can be evaluated and used for the macroscale computation.



3 Estimation of NMR Error

It is of interest to estimate the introduced solution error. Here we will focus solely on the error
due to NMR and ignore other error sources (such as time and space discretization). We define
the (two-scale) error as

(ē, eµ) = (ū− ūR, u
µ − uµR), (15)

where u is the exact solution and uR the solution to the reduced problem. We define a
corresponding error equation, given by

A(e, v) = L(v)−A(uR, v) = R(v). (16)

In order to define a norm, we introduce the symmetric form As, cf. Parés et al. [4], as

As(u, v) =
1

2
[A(u, v) +A(v, u)] =

∫
I

∫
Ω
〈∇v · k∇u〉� dΩ dt+

1

2

∫
Ω

[
〈vcu〉�|t=0 + 〈vcu〉�|t=T

]
dΩ.

(17)
We now define the norm of the error

‖e‖2 = As(e, e), (18)

and by using Cauchy-Schwartz inequality we obtain the upper bound ‖e‖ ≤ ‖es‖ where es solves
the symmetric error equation

As(es, v) = R(v) ∀v ∈ V. (19)

Utilizing that the symmetrized error equation (19) is localizable in time, and using properties of
the reduction technique, (in particular orthogonality,) we can obtain the explicit error estimate,
cf. Jakobsson et al. [2],

‖e‖2 ≤ ‖es‖2 ≤
∫
I

[
1 + γ

λNR

∫
Ω
〈c(ΠCu̇stat,R)2〉� dΩ

]
dt+ 4

∫
Ω
〈c(ΠC[u0 − ustat,R(0)])2〉� dΩ, (20)

where ΠCv = v − ΠRv and ΠRv is the projection of v on to the reduced space. The constant
γ connects the alternative decomposition (10) to the standard decomposition (3). We note, in
particular, that the estimates do not (explicitly) depend on the microscale solution, and that no
extra modes are needed for estimating the error.

4 Goal Oriented Error Estimation

It is also of interest to estimate the error in pre-determined Quantities of Interest (QoI). To this
end we define a general linear functional to represent the QoI

L?(u) =

∫
I

∫
Ω

[
〈ucX〉� + 〈∇u · k∇Y 〉�

]
dΩ dt+

∫
Ω
〈ucZ〉�|T dΩ, (21)

where X, Y , Z are a priori chosen functions which can be adapted for different QoI. We also
define EQoI = L?(e) as the error in the QoI. To estimate the NMR error, EQoI, we introduce the
dual problem: Find the dual solution u? ∈ U? such that

A(v, u?) = L?(v) ∀v ∈ V? (22)

where U?, V? are suitable function spaces. We finally use the parallelogram law to set up the
following upper and lower bounds

E−QoI < EQoI < E+
QoI, (23)

where E−QoI, E
+
QoI can be obtained explicitly in terms of the reduced solutions, uR and u?R.
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Figure 1. Left: Exact (E) and estimated (Es
est) energy norm of the error. Right: Corresponding effectivity

index η = Es
est/E.

5 Numerical Example

We consider a simple two-scale problem as an example. The macroscale problem is a 1D heat flow
through a wall with instantaneous heat increase at one boundary, and the microscale problem
is a 3D RVE with a spherical inclusion. The inclusion has 5 times lower heat conductivity
compared to the surrounding material. In Figure 1 the exact and estimated error is plotted
together with the corresponding effectivity index. We note that the error estimation performs
well in the region where NR <≈ 0.4N .

Conclusions and Future Extensions

In this work we have presented a NMR approach to multiscale modeling. We obtain guaranteed
bounds of the error at very low cost. It is important to note that the method is limited to linear
problems; for non-linear problems it is necessary to resort to other model reduction techniques,
such as Proper Orthogonal Decomposition. This will also mean that we abandon guaranteed
bounds, and will instead aim for good approximations of the resulting error.
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